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Numerical Heat Transfer During Partially–confined, Confined, and Free Liquid Jet 
Impingement with Rotation and Chemical Mechanical Planarization Process Modeling 

 
 

Jorge C. Lallave Cortes 

 

ABSTRACT 

 

This work presents the use of numerical modeling for the analysis of transient and 

steady state liquid jet impingement for cooling application of electronics, and energy 

dissipation during a CMP process under the influence of a series of parameters that 

controls the transport phenomena mechanism. Seven thorough studies were done to 

explore how the flow structure and conjugated heat transfer in both the solid and fluid 

regions was affected by adding a secondary rotational flow during the jet impingement 

process. Axis–symmetrical numerical models of round jets with a spinning or static 

nozzle were developed using the following configurations: confined, partially–confined, 

and free liquid jet impingement on a rotating or stationary uniformly heated disk of finite 

thickness and radius. Calculations were done for various materials, namely copper, silver, 

Constantan, and silicon with a solid to fluid thermal conductivity ratio covering a range 

of 36.91–2222, at different laminar Reynolds numbers ranging from 220 to 2,000, under 

a broad rotational rate range of 0 to 1,000 RPM (Ekman number=∞–3.31x10–5), nozzle–

to–plate spacing (β=0.25–5.0), dimensionless disk thicknesses (b/dn=0.167–1.67), 

confinement ratio (rp/rd=0.2–0.75), and Prandtl number (1.29–124.44) using NH3, H2O, 
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FC–77 and MIL–7808 as working fluids. An engineering correlation relating the average 

Nusselt number with the above parameters was developed for the prediction of system 

performance. The simulation results compared reasonably well with previous 

experimental studies. 

The second major contribution of this research was the development of a three 

dimensional CMP model that shows the temperature distributions profile as an index of 

energy dissipation at the wafer and pad surfaces, and slurry interface. A finite element 

analysis was done with FIDAP 8.7.4 package under the influence of physical parameters, 

such as slurry flow rates (0.5–1.42 cc/s), polishing pressures (17.24–41.37 kPa), pad 

spinning rates (100–250 RPM), carrier spinning rates (15–75 RPM), and slurry film 

thicknesses (40–200 µm). Results in this study provide further insight of how the above 

parameters influence the thermal aspects of pad and wafer temperature and heat transfer 

coefficients distributions across the control volume under study. Numerical results 

support the interpretation of the experimental data. 
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Chapter 1 Introduction 

 

 

The impinging jet can be defined as a high velocity mass flow ejected from a 

nozzle or slot that impinges on the heat transfer surface. The principal virtues of this 

method of cooling are the large rate of heat transfer and the relative ease with which both 

the heat transfer rate and distribution can be controlled. Impinging jets and sprays have 

been demonstrated to be an effective means of providing high heat/mass transfer rates in 

industrial processes where rapid heating, cooling, or drying is necessary. Processes like 

annealing of metal and plastic sheets, tempering glass, chemical vapor deposition, 

avionics cooling, cooling of turbine blades, and drying of textiles are some examples 

where we use this technique. In confined regions of airfoils such as the leading edge or 

trailing edge, span wise lines of impingement jets are sometimes used to focus cooling on 

a primary location of high external heat load, like the airfoil’s stagnation region. 

Nowadays, many of these processes have become more complex and electronic products 

are becoming smaller in size, opening the doors to new techniques where conventional 

methods are inadequate or ineffective.  

The second part of the investigation involved a three dimensional model of the 

chemical mechanical polishing process using a finite element method (FEM) to examine 

further the outcome of a series of experimental set up characteristics as part of the overall 

process. During the last twenty years, CMP process has been generally used in the 

microelectronics industry due to its versatility, simplicity, and cost effectiveness to 
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achieve global planarization, pattering of metals, and dielectric layers in fewer steps than 

other conventional methods. Nowadays, the modeling of the material removal process 

during CMP seems to have taken two distinctive types of approaches based on two 

extremes in dealing with the interactions between the pad and the wafer. The first is 

purely a fluid mechanical approach, in which the wafer and the pad are assumed to be 

separated by a continuous fluid layer of slurry and the material removal is viewed as a 

consequence of erosion, chemical removal and particles abrasion of the slurry. These are 

called wafer–scale macroscopic analyses or hydrodynamic contact modes, which may 

provide useful information about the influence of the shear and normal stress on the 

removal rate. The second approach is based on solid to solid contact mechanics in CMP 

and the assumptions of plastic contact over the wafer, abrasive particles, and pad 

interface in which the material removal is attributed to abrasive wear of the wafer surface 

in direct contact of the slurry particles and the pad. The solid to solid contact mode is 

referred to the mode where the down pressure is relatively large and the velocity is 

relatively small. This is considered the most frequent mode in CMP process, in which the 

two–body abrasion dominates and the fluid flow effects are immaterial. Many researchers 

extensively acknowledged that this approach seems to be physically more reasonable in 

describing experimental results.  

On the contrary, there has been experimental evidence that various chemical 

effects observed like oxidizing and change in concentration of the slurry are responsible 

for the material removal rate (MRR) and the quality of the surface finish. Such 

observations cannot be explained by changes in the surface charge because its effect is 

irrelevant. Indeed, significant changes in the wafer surface exposed to the chemicals in 
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the slurry will play a significant role in the CMP process. As a result of the previous 

findings, an intermediate approach for the actual material removal mechanism is 

introduced as a semi–direct contact approach that is analogous to the transition region of 

the boundary layer approach of Prandtl. This approach presents the removal mechanism 

as a function of various factors that includes mechanical and chemical effects. In a non–

direct contact mode, the CMP process occurs by the two body and three body abrasions 

occurring simultaneously at the interface. As the roughness of the pad is in the order of 

microns, and the size of the abrasive particles is in the order of nanometers, the two body 

abrasions mainly occur across the wafer surface and the pad surface asperities. 

Conversely, the process of CMP is more complicated at times when the wafer, abrasive 

particles in slurry and pad surfaces come in contact constituting a three body abrasion at 

the interface. In this model, it is assumed that the abrasive particles are fully embedded 

across the wafer surface under the applied pressure using the polishing pad, in which 

ploughing and cutting processes occur simultaneously, resulting in the material removal 

from the wafer surface. This model does not cover factors such as chemical effects, 

thermal effects, pad wear, and so on. The model is based on the assumptions of the 

abrasive wear theory, in which the abrasive indents and causes plastic deformation in the 

wafer. 

Due to the friction between the particles of the slurry, pad asperity and wafer 

surface under a given pressure yield to high temperatures. The changes in friction and 

wear, especially during the run–in period, are strongly correlated to the blockage of 

energy dissipation paths within the sliding materials. As such, the preservation of the 

tribological integrity of a rubbing material depends mainly on the efficiency of 
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dissipation of the friction–induced thermal energy. Wafer, being more thermally 

conductive than the polymeric polishing pad, absorbs a major part of the heat. Thermal 

effects are important in the CMP process, as the chemical reactions and pad properties 

are affected to a considerable extent.  

1.1 Configuration of Impinging Jets  

Jets can be configured in different ways. The two main qualitatively flow 

configurations are free surface impinging jet and confined submerged impinging jet. A 

third physical configuration of partially–confined impinging jet has been studied as part 

of this investigation. The fluid dynamics of all cases are different.  

(a) 

 

(b) 

 

(c) 
 
 
 
 
 
 
 
 
 

 
Figure 1.1  (a) Free liquid jet impingement, (b) Confined liquid jet impingement, and 

(c) Partially–confined liquid jet impingement. 
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Figure 1.1 shows the two dimensional representation of all previous cases. In 

terms of geometry, there two main cases a planar case with the jet issuing from a slot, and 

an axis–symmetric case with a round nozzle. Additional geometries such as jet issuing 

from square, rectangular or elliptical nozzles, or oblique jets are also possible. 

1.2 Impinging Jet Characteristics and Zones 

1.2.1 Free Surface Jets 

A free surface jet is formed when a liquid discharges from a nozzle or orifice into 

the ambient air or other gaseous environment. The free surface develops instantly at the 

nozzle exit and remains throughout the impingement process. When an axial free surface 

jet impinges on a circular disk, the fluid forms a boundary layer, which grows along the 

disk radius. The flow can be divided into two regions, the impingement or stagnation 

zone and the wall jet region. The jet flow is undeveloped up to six or seven times the 

nozzle diameter measured from the lip. The stagnation zone is characterized by pressure 

gradient, which stops the flow in the axial direction and turns radially outward.  

The boundary layer around the stagnation point is laminar due to a favorable 

pressure gradient effect. The increase of the velocity along the wall keeps a thin boundary 

layer thickness. The wall jet zone is free of gradients of the mean pressure; the flow 

decelerates and spreads radially. At the end, the structure of the jet free surface depends 

on surface tension, and gravitational and pressure forces. The liquid jet size, speed, and 

orientation determine the magnitude of these forces. The interaction of free liquid jet 

impingement and target rotation results in a complex and powerful flow capable of 

improving the heat transfer processes considerably. This method of cooling or heating 

can be used for processes involving a rapid heat dissipation rate or high heat flux. 
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1.2.2 Confined Submerged Jets 

If the fluid is discharged from a nozzle or orifice attached to a confinement plate 

into a body of surrounding fluid that is the same as the jet itself, then it is called confined 

submerged. Confined submerged liquid jets find use in both axis–symmetric and planar 

configuration. Both configurations share the common feature of a small stagnation zone 

at the impingement surface whose size is of the order of the nozzle diameter or slot 

dimension, with the subsequent formation of a wall jet region.  

The model covers the entire fluid region (impinging jet and flow spreading out 

under a stationary or spinning confined surface) and stationary or spinning solid disk as a 

conjugate problem. The liquid jet considered in this study is axis–symmetric and 

submerged, with the jet issuing into a region containing the same liquid. In most 

applications, the nozzle–to–plate distance is too small to enable the development of a jet 

flow condition. A thicker shear layer forms under laminar conditions around the nozzle, 

with a similar behavior as a plane shear layer. The shear layer thickness becomes 

comparable with the jet diameter downstream, and the behavior of the layer changes 

considerably. The interaction of rotation and impingement creates a complex and 

powerful flow capable of improving heat transfer processes considerably. This 

arrangement is suitable for microgravity applications where centrifugal force due to disk 

rotation can be used to force the fluid over the heated surface. 

1.2.3 Partially–confined Jets 

In a partially–confined jet the nozzle or slot is attached to a confinement plate 

parallel to the impingement surface with a separation distance of Hn. The diameter or 

length of the confinement region is smaller than the impingement target, and therefore the 
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fluid comes out of confinement spreading downstream as a free surface flow exposed to 

the ambient environment. To achieve a reliable cooling system design with impinging jet 

one has to choose an appropriate jet configuration and surrounding geometry. It is 

necessary to understand that the heat transfer rate from an impinging jet onto a surface is 

a complex function of many parameters, such as flow rate, working fluid properties, 

nozzle structure and orientation, nozzle to target spacing, confinement ratio and 

displacement from the stagnation point. The liquid jet considered in this study is axis–

symmetric. Heat transfer capabilities of jets impinging on a rotating body are of 

importance in the thermal analysis of various types of machineries and in a wide variety 

of applications in the area of thermal heating and cooling. Processes like microgravity 

flow delivery, annealing of metal, chemical vapor deposition, and electronics packaging 

can use this technique. 

Nowadays, many of these processes have become more complex and electronic 

products are becoming smaller in size, opening the doors to new techniques where 

conventional methods are inadequate or ineffective. The principal virtues of this method 

of cooling are the large heat transfer rate attainable relative to nonimpinging flows and 

the relative ease with which both the heat transfer rate and distribution can be controlled.  

1.3 Chemical Mechanical Polishing Process Set–up 

A standard CMP process consists of three main components. The first component 

includes a polishing pad fastened to a circular polishing platform. The second component 

is a wafer carrier (polishing head) that holds the substrate with a retaining ring that is 

adjusted to generate a uniform pressure profile across the entire wafer to help offset 

excessive material removal at the edges. Currently the wafer pressure versus retaining 
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ring pressure adjustment is done by trial and error. This wafer is rotated about its axis 

while being pressed down against a rotating polymeric polishing pad commonly made of 

polyurethane, since the chemistry of this polymer allows the pad characteristics (such as 

hardness and porosity) to be tailored to meet specific material property needs in CMP 

Jairath et al. [1]. Both previous components of the process are circular and typically 

rotate at similar speed and in the same direction but eccentrically oriented, despite the 

fact that pressing the wafer against the pad surface by applying a load or force which can 

be varied. The third component of the process is carried by the polishing pad and is the 

slurry, a liquid that contains a colloidal suspension of abrasive particles such as alumina 

(Al2O3) or silica SiO2 as well as specific chemicals chosen for polishing. Finally, the 

surface layer of the polished material is removed progressively as a result of the chemical 

and mechanical interactions provided by the polishing slurry.  

The slurry chemistry, including chemical reagents and its concentration, modifies 

the properties of the surface to be polished. The mechanical interactions, on the other 

hand, vary depending on solid loading, the slurry particle size, and distribution, in view 

of the fact that these factors create a disparity in the load applied per particle. Other 

empirical variables can be recognized, such as the applied normal force (or down 

pressure), relative velocity of the wafer to the pad, and pad properties (Young’s Modulus, 

hardness and porosity, etc.). However, due to the complexity of CMP by concurrent 

polishing of multiple materials and lumped parameter conditions, the fundamental 

polishing mechanism underlying the process are not yet well understood [2]. Figure 1.2 

shows a schematic side view of a CMP process. 
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Figure 1.2  Schematic side view representation of a CMP process. 

1.3.1 Experimental Testing Set Up 

The universal tribological tester (UTT) technique is done with a bench top Center 

for Tribology Research (CETR) universal tribometer to examine the nature of polish 

(acoustic emission versus time) and the surface roughness of the sample. The real–time 

measurements of the data, along with other measurements, are used to calculate the wear 

and material removal rate (MRR) of the sample. In addition, it helps to quantify the wear 

resistance of the material at different pressure and rotational velocity. Table 1.1 provides 

the basic specifications of an experimental universal tribometer. The UTT tester provides 

real–time measurements of the following tribological parameters of the polishing: carrier 

and platen speed ranging, minimum and maximum load, and contact pressure load 

resolution and coefficient of friction as results of acoustic frequency as function of time. 
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Table 1.1  CETR universal tribometer specifications. 

Specifications Measurement or Description 

Specimens 
dimensions 

0.25 inch to 4 inches 

Pad dimensions 1 inch to 9 inches 

Speed ranging 
0.1 micron/s (0.001 RPM) up to 

50 m/s (10,000 RPM) 

Minimum load 0.1 mN (10 mg) 

Maximum load 
(w/high load system) 

0.5 kN (50 Kg) 

Contact Pressure 0.05 to 500 psi 

Load resolution 
(w/high load system) 

50 nN (yes, the same as without 
the high load system! 

Total sampling rate 20 kHz 

 

1.4 Problem Under Study 

The detailed information about conjugate heat transfers from a rotating target 

(Prob. #1) or spinning confinement disk (Prob. #2) cooled by a confined liquid jet is 

currently not available in open literature. Table 1.2 summarized the nine problems under 

study as part of this work. Past studies are restricted to either cooling of a stationary disk 

by jet impingement or by pure rotation. Additionally, most of these works deal with 

average heat transfer measurements rather than local distributions. The intent of the 

following research is to study the conjugate heat transfer effect with a steady flow over a 

rotating solid wafer under confinement with constant fluid properties (Prob. #1) and to 

study the conjugate heat transfer effect of a spinning confinement disk over a solid 

stationary disk under temperature dependent properties (Prob. #2). Numerical results 

were done for various flow rates or jet Reynolds numbers, spinning rates or Ekman 

numbers, different disk thicknesses and nozzle to target spacing ratios. A broad range of 

Prandtl numbers was covered with the use of four working fluids, namely water, 
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ammonia, FC–77, and MIL–7808. The thermal conductivity effect was studied with the 

implementation of four different disk materials: copper, silicon, silver, and Constantan. 

The results offer a better understanding of the fluid mechanics and heat transfer behavior 

of liquid jet impingement under an insulated spinning or stationary wall condition on a 

stationary or rotating target. In addition, the enhancements of heat transfer during liquid 

jet impingement over a rotating disk could be done by triggering the turbulence in the 

flow field by increasing the flow rate or rotational speed but it was not examine as part of 

this study. The following studies were limit to laminar flow conditions during the present 

investigation. Even though no new numerical technique has been developed, results 

obtained in the present investigation are entirely new. The quantitative effects of different 

parameters as well as the correlation for average Nusselt numbers will be practical guides 

for enhancement of heat or mass transfer under microgravity.  

There have been only a few studies on transient heat transfer and most of them are 

experimental work on free jet impingement. None of these studies considered transient 

heat transfer during partially–confined liquid jet impingement. Prob. #3 and #7 

considered only laminar flow conditions to address the enhancement of heat transfer 

removal that is critical in space borne applications and accomplish the job with lower 

fluid inventory and hence lower the mass of the cooling system by adding rotation to the 

process. A higher rate of rotation is expected to enhance heat transfer at the impingement 

region, but may result in flow separation from the heat transfer surface further 

downstream, which is not desirable. Therefore, present studies are significant in 

addressing the heat transfer enhancement under steady state (Prob. #3) and transient 

conditions (Prob. #7) for a partially–confined liquid jet impingement over a spinning 
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target. The variation of disk temperature as well as local and average heat transfer 

coefficients during steady state (Prob. #3) and transient heating process (Prob. #7) are 

explored for different combinations of flow rate, spin rate of the target disk, nozzle to 

target spacings, confinement ratio, disk thickness and disk materials. The numerical 

results as well as the correlation for average Nusselt number are expected to be valuable 

towards the design of cooling or heating systems for engineering applications.  

A wealth of information exists on heat transfer effects on the basic cases of 

individual and array set up of free and confined jet impingement. However, newer and 

more specific cases of cooling design require additional information to account for the 

heat transfer effects of partially–confined jet impingement. Prob. #4 considered the 

simultaneous spinning of a confinement disk and target surface under laminar partially–

confined jet impingement. In addition, none of the studies have considered the steady 

state rotation of the nozzle cover plate and target disk to further induce fluid motion at 

microgravity. Therefore, the present study is significant in addressing heat transfer 

enhancement under certain conditions. Calculations were done under five different flow 

rates or jet Reynolds numbers, six spinning rates or Ekman numbers, five different disk 

thicknesses and four nozzle to target spacings. A broad range of Prandtl numbers was 

covered with the use of four working fluids, namely water (H2O), ammonia (NH3), 

flouroinert (FC–77) and MIL–7808 lubricating oil. The thermal conductivity effect was 

studied with the implementation of five different disk materials: aluminum, Constantan, 

copper, silicon, and silver. Even though jet impingement heat transfer from a stationary 

surface has been thoroughly investigated, only a few attempted to produce local heat 

transfer distribution for a rotating disk in combination with a free liquid jet impingement. 
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In addition, none of the studies have attempted to explore conjugate heat transfer effect in 

a rotating target during axial free jet impingement. The present study attempts to carry 

out a comprehensive investigation of a steady state (Prob. #5) and (Prob. #6) transient 

conjugate heat transfer analysis for a free liquid jet impingement over a spinning solid 

disk. Computations using water (H2O), ammonia (NH3), flouroinert (FC–77), and oil 

(MIL–7808) as working fluids were carried out for different combinations of geometric 

and flow parameters and five different disk materials. The numerical model along with 

the results for steady state and transient heat transfer for different Reynolds numbers, 

Ekman numbers, disk thicknesses and solid material properties is expected to be valuable 

towards the design of liquid jet impingement cooling or heating systems for various 

engineering applications.  

Most publications primarily focus on other aspects of the CMP process like film 

stress, pattern dependencies, pad roughness, material removal rate, abrasive particles size, 

slurry film and pressure distributions, and chemicals effects. Only a few examine the 

thermal aspects during the planarization process over the wafer surface. However, in 

these research works, the reported temperature rise is either the average temperature on 

the pad surface, a predicted average temperature on the wafer surface, or temperature rise 

at different isolated locations on the wafer. These works report the overall temperature 

rise but do not provide the information about the temperature distribution on the wafer 

surface. The temperature profile on the wafer surface as a function of the radius under the 

influence of the above parameters will provide valuable insight into the extent of 

temperature rise at different locations on the wafer. For example, since the material 

removal rate during copper CMP is sensitive to temperature, the temperature distribution 
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over the entire wafer will significantly affect the uniformity of material removal over the 

entire wafer. Understanding the temperature profile of the substrate will decrease the 

with–in–wafer non–uniformity and thus improves yield by minimizing the number of 

faulty dies. The physical representation of a three dimensional CMP schematic is shown 

in figure 1.3. 

 

 

Figure 1.3  Three dimensional (3–D) CMP schematic. 

Prob. #8 and #9 characterized the steady state and transient temperature 

distributions or profile as the index of energy dissipation at the wafer surface, slurry and 

pad interface. By solving the numerical problems, we present the temperature profiles 

and heat transfer convection coefficients on the pad and wafer surfaces under the 

influence of different physical parameters, such as slurry flow rate, slurry film thickness, 

wafer spinning rate, pad spinning rate, and polishing pressure.  
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The numerical modeling efforts are supported with a finite element analysis using 

the computer fluid dynamics of the FIDAP 8.7.4 package. The coefficient of friction 

values (µfr= 0.2–0.5) at different pressures and velocities required to calculate the heat 

dissipation at the interface are obtained from copper polishing experiments conducted on 

a CETR universal tribometer bench top tester. To gain greater insight into this behavior, 

the thermal dynamics associated with energy are further discussed in the results by 

figures and parameters. Finally, temperature distribution and heat transfer convection 

coefficients results are compared with experimental data under the same process 

conditions, which were found to be consistent. The main characteristics of the nine 

problems reported in this work are summarized in Table 1.2. They are presented in an 

order such that the difficulty from a computational point of view increases gradually. 

Table 1.2 Summary of problems under study. 

Problem 

# 
Fluid Model 

BC’s and Fluid 

Properties 
Analysis Body force 

1 
water, ammonia 

flouroinert and oil 
(MIL–7808) 

Axis–symmetric,  
Confined submerged 

jet 

Target rotation and 
constant 

Steady–
State 

Gravity 

2 
water, ammonia 

flouroinert and oil 
(MIL–7808) 

Axis–symmetric,  
Confined submerged 

jet 

Confined disk rotation 
and Temperature 

dependent 

Steady 
State 

Gravity 

3 
water, ammonia 

flouroinert and oil 
(MIL–7808) 

Axis–symmetric, 
Partially–confined 

submerged jet 

Target rotation and 
Temperature 
dependent 

Steady 
State 

Gravity 

4 
water, ammonia 

flouroinert and oil 
(MIL–7808) 

Axis–symmetric, 
Partially–confined 

submerged jet 

Target and confined 
disk rotation, 
Temperature 
dependent 

Steady 
State 

Gravity 

5 
water, ammonia 

flouroinert and oil 
(MIL–7808) 

Axis–symmetric,  
Free surface jet 

Target rotation and 
Temperature 
dependent 

Steady 
State 

Gravity 

6 
water, ammonia 

flouroinert and oil 
(MIL–7808) 

Axis–symmetric, 
Free surface jet 

Target rotation and 
Temperature 
dependent 

Transient Gravity 

7 water 
Axis–symmetric, 

Partially–confined 
submerged jet 

Target rotation and 
Temperature 
dependent 

Transient Gravity 

8 Alumina 3–D 
Carrier and pad 

spinning, and constant  
Steady 
State 

Gravity 

9 Alumina 3–D 
Carrier and pad 

spinning, and constant 
Transient Gravity 
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The level of difficulty includes model set up, time, and the computing resources 

required as part of the simulation process. The computational difficulty for each problem 

appears in different aspects that can be simplified into the following rules: 

1. 3–D models (prob. #8 and #9) are more difficult than axis–symmetric (prob. #1 

through #7). 

2. Transient analysis with fixed time steps (probs. #6, #7, and #9) are more difficult 

than steady state analyses (prob. #1 through #5).  

3. Free surface jet (prob. #5 and #6) are more sensitive and difficult than confined 

and partially–confined jet impingement (prob. #1 through #4). 

1.5 Objectives  

The main objective of the first part of the present investigation is to understand 

the relationship between fluid and solid as conjugated heat transfer phenomena during a 

process of free, confined, and partially–confined jet impingement under steady state and 

transient cooling conditions. Most of the above simulations consider temperature 

dependent properties of the fluid region in order to predict more precise results currently 

not available in the literature. In addition, this research examines the thermal boundary 

layer behaviors that control the steady state and transient convective heat transfer under 

the influence of a secondary rotational flow. 

The present research focuses on addressing the effects of the following 

parameters on the steady state and transient heat transfer process. 

1. Jet Reynolds number. 

2. Ekman numbers of target and confined wall at different spinning rates. 

3. Disk thicknesses. 
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4. Nozzle to target spacings. 

5. Confinement ratio (rp/rd). 

6. Prandtl number of different fluids. 

7. Thermal conductivity of various materials. 

8. Free, confined and partially–confined jet impingement configurations. 

Additionally, a set of correlations for average Nusselt numbers results have been 

developed as a function of the above parameters to characterize the above heat transfer 

processes. The quantitative effects of different parameters are attached to the exponent 

that correlates with actual numerical results. These correlations are expected to be 

valuable and practical towards the design of cooling or heating systems under jet 

impingement or microgravity engineering applications. 

The second part of this research includes the development of a three dimensional 

heat transfer model to estimate the steady state and transient temperature distributions at 

the wafer surface, slurry and pad interface during the CMP process. The model examines 

the index of energy dissipation at the slurry interface, wafer and pad surfaces as a 

differentiation technique of the CMP mechanism. 

These numerical studies capture the effects of the following parameters on the 

steady state and transient chemical mechanical polishing process. 

1. Slurry flow rates. 

2. Different polishing pressures. 

3. Variable heat flux at the polishing surface.  

4. Polishing pad and carrier spinning rates. 

5. Slurry film thickness. 
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Chapter 2 Literature Review 

 

 

2.1 Free Surface Jet Impingement 

Heat transfer from a stationary surface by free jet impingement has been well 

documented in the literature. One of the first theoretical analyses of a circular laminar 

impinging jet spreading into a thin film was done by Glauert [3]. Solutions to the 

boundary layer equations were sought for a laminar flow using similarity transformation. 

Watson [4] considered the flow due to jet spreading out over a plane surface, either 

radially or in two dimensions. Chaudhury [5] presented the heat transfer aspect of 

Watson’s problem. Heat and mass transfer characteristics of an impinging axis–

symmetric jet issuing from a circular nozzle has been studied by Scholtz and Trass [6]. 

The theoretical and experimental findings are well correlated in the stagnation–flow and 

in the wall jet regions. Metzger et al. [7] experimentally studied the effects of Prandtl 

numbers on heat transfer by liquid jets on a uniform temperature boundary condition at 

the test surface. They presented only surface average values of the Stanton number, 

determined from the measurement of the total heat flux, test surface temperature, and the 

adiabatic jet wall temperature. The correlations are based on the data for oil and water, 

and their correlations represent 95% of the data for disk radii up to 6.6 jet diameters to 

within ± 25%.  Jiji and Dagan [8] carried out experimental studies for single jet and 

arrays of jets using water and FC–77 coolant for various heat source configurations. 

Theoretical flow solutions for laminar axis–symmetric liquid jet impingement over a 
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stationary surface were discussed by Adachi [9]. Liu and Lienhard [10] investigated 

circular sub–cooled liquid jet impinging on a surface maintained at uniform heat flux. 

They used an integral method to obtain analytical predictions of temperature distribution 

in the liquid film and the local Nusselt number. They carried out experiments to test the 

predictions of the theory.  

A review of both analytical and experimental studies on jet impinging on a flat 

surface has been presented by Polat et al. [11]. Wang et al. [12, 13] presented an 

analytical study of heat transfer between an axis–symmetric free impinging jet and a solid 

flat surface with a non–uniform wall temperature or wall heat flux. The results obtained 

showed that the non–uniformity of the wall temperature or heat flux has a considerable 

effect on the Nusselt number. Wolf et al. [14] performed experiments on a planar, free 

surface jet of water to investigate the effects of non–uniform velocity profile on the local 

convective heat transfer coefficient for a uniform heat flux surface. The heat transfer 

coefficient was measured for different heat fluxes and Reynolds numbers. Vader et al. 

[15] measured temperature and heat flux distributions on a flat, upward facing, and 

constant heat flux surface cooled by a planar, impinging water jet. The jet velocity, the 

fluid temperature, and heat flux were varied. They found that the stagnation convection 

coefficient exceeded those predicted by laminar flow analysis and this was caused by the 

existence of free stream turbulence.  

Stevens and Webb [16] considered an axis–symmetric free liquid jet impinging on 

a flat uniformly heated surface. Their experimental study presented the effects of 

Reynolds number, nozzle–to–plate spacing, and jet diameter. Liu et al. [17] presented an 

analytical and experimental investigation for jet impingement cooling of uniformly 
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heated surfaces to determine local Nusselt number from the stagnation point to radii up to 

40 diameters. Womac et al. [18] presented correlating equations for heat transfer 

coefficient for the cooling of discrete heat sources by liquid jet impingement. Leland and 

Pais [19] performed an experimental investigation to determine the heat transfer rate for 

an impinging free surface axis–symmetric jet of lubricating oil for a wide range of 

Prandtl numbers, and for conditions varying inside the fluid film. They concluded that the 

heat transfer surface configuration has an important effect on Nusselt number. Rahman et 

al. [20] performed a numerical simulation of a free jet of high Prandtl number fluid 

impinging perpendicularly on a solid substrate of finite thickness containing electronics 

on the opposite surface. Computed results were validated with available experimental 

data. Chattopadhyay and Saha [21] performed a numerical study of turbulent flow and 

heat transfer from an array of impinging horizontal knife jets on a moving surface using 

large eddy simulation with a dynamic sub grid stress model. Roy et al. [22] reported 

surface temperature measurements for rectangular jet impingement heat transfer on a 

vehicle windshield using liquid crystals. Chan et al. [23] reported experimental results on 

heat transfer characteristics of a heated slot jet impinging on a semi–circular convex 

surface. Aldabbagh and Sezai [24] carried out a numerical investigation of the flow and 

heat transfer characteristics of a laminar three dimensional, square twin jet impingement 

on a flat plate under steady state condition. Their results showed that the flow structure is 

strongly affected by jet–to–plate distance.  

Chatterjee et al. [25] studied laminar impinging flow heat transfer for a purely 

viscous inelastic fluid. Their study demonstrated that a small departure from Newtonian 

rheology leads to qualitative changes in the Nusselt number distribution along the 
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impinging surface. Yilbas et al. [26] numerically examined the jet impingement onto a 

hole with a constant wall temperature using a control–volume approach. Tong [27] 

numerically studied convective heat transfer of a circular liquid jet impinging onto a 

substrate to understand the hydrodynamics and heat transfer of the impingement process 

using the volume–of–fluid method to track the free surface of the jet. The effects of 

several key parameters on the hydrodynamics and heat transfer of an impinging liquid jet 

were examined. Silverman and Nagler [28] reported experimental data on the application 

of jet impingement for the cooling of accelerator targets using water as the coolant. Sezai 

and Aldabbagh [29] investigated the structure of the flow field and its effect on the heat 

transfer characteristics of a jet array system in steady state for Reynolds numbers 

between 100 and 400. Yang and Hwang [30] presented the numerical simulations of flow 

characteristics of a turbulent slot jet impinging on a semi–cylindrical convex surface.  

2.2 Jet Impingement with Spinning Boundaries 

The applications of liquid jet impingement over a rotating surface are growing in 

various processes encountered in mechanical, manufacturing, electrical and chemical 

engineering. The high heat transfer rate, along with the simplicity of hardware 

requirements makes this cooling process an attractive option in a variety of applications. 

In addition, rotation is used in metal etching, rinsing operations to dissolve species, 

surface preparation or coating, and microgravity fluid handling. The interaction of liquid 

jet impingement and rotation generates a powerful flow capable of improving thermal 

diffusion and mass transfer considerably in the absence of gravity. 

On all rotating disks, whether smooth or roughened, there is an inherent pumping 

of fluid radially outward along the disk surface. Early research work on rotational flow 
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confined between two infinite parallel disks, one at rest and the other rotating was 

performed by Batchelor [31]. His analysis showed that three flow regions develop at high 

rotational rate, having the structure of two shear layers bounding an inviscid core rotating 

at constant angular velocity. An additional study on heat transfer rate from a rotating disk 

was carried out by Kreith et al. [32]. Their research covered a wide range of rotational 

Reynolds numbers (400 to 10,000) including laminar, turbulent and transitional regimes. 

This type of flow is found in parallel disk viscometers, rotary disk in a stationary housing 

of a rotor, and the chemical mechanical polishing process where the abrasive polishing 

slurry interacts with the pad and the wafer. The presence of rotation adds more 

complexity to the flow field. Experimental studies of a single round jet impinging on a 

rotating disk were conducted by Metzger and Grochowsky [33]. Tests were conducted for 

a range of flow rates and disk rotational speeds with various combinations of jet and disk 

sizes. Flow visualization using smoke addition to the jet flow revealed the presence of a 

transition regime. They concluded that higher rotational speeds, larger impingement radii, 

and smaller jet flow rate favor a rotationally dominated flow whereas the opposite trends 

favor an impingement dominated flow. Heat transfer rate was essentially independent of 

jet flow rate in the rotationally dominated regime but increased strongly with increasing 

flow rate in the impingement dominated regime. Carper and Deffenbaugh [34] conducted 

experiments to determine the average convective heat transfer coefficient for the rotating 

solid–fluid interface at uniform temperature, cooled by a single liquid jet of oil impinging 

normal to the rotating disk. Tests were conducted for a range of Reynolds numbers from 

230 to 1,800 and for various disk rotational speeds. Carper et al. [35] conducted further 

experiments to consider the Prandtl number effects on the average heat transfer 
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coefficient at the rotating disk. They documented the effects of rotational Reynolds 

number on the average Nusselt number for various liquid jet Reynolds numbers. 

Popiel and Boguslawski [36] reported measurements of heat transfer rate for a 

range of rotational and jet Reynolds numbers. Metzger et al. [37] employed liquid crystal 

for mapping local heat transfer distributions on a rotating disk with jet impingement. 

Brodersen et al. [38] experimentally studied the flow field interaction between an 

impinging liquid jet and a rotating disk. Their experiments covered separate 

measurements of the disk–wall flow, the jet flow and interaction between the two. Saniei 

et al. [39] investigated the heat transfer coefficients from a rotating disk with jet 

impingement at its geometric center. The air jet was placed perpendicular to the disk 

surface at four different distances from the center of the disk. Saniei and Yan [40] 

presented local heat transfer measurements for a rotating disk cooled with an impinging 

air jet. Several important factors, such as rotational Reynolds numbers, jet Reynolds 

numbers, jet–to–disk spacing, and the location of the jet center relative to the disk center, 

were examined.  

Hung and Shieh [41] reported experimental measurements of heat transfer 

characteristics of jet impingement onto a horizontally rotating ceramic–based multichip 

disk. The chip temperature distributions along with local and average Nusselt numbers 

were presented. Kang and Yoo [42] carried out an experimental study using hotwire 

anemometry to investigate the turbulence characteristics of the three dimensional 

boundary layer on a rotating disk with liquid jet impingement at its center. Shevchuk et 

al. [43] presented an approximate analytical solution using integral method for jet 

impingement heat transfer over a rotating disk. The characterization of a thin film of 
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water from an axis–symmetric controlled impinging jet over stationary and rotating disk 

surfaces were experimentally studied by Ozar et al. [44, 45]. The authors measured the 

thickness of the liquid film on the disk surface by an optical method, including the 

characterization of the hydraulic jump. They concluded that the effect of rotation on heat 

transfer was larger for a lower liquid flow rate and gradually decreases with the 

increment of liquid flow rate. Semi–empirical correlations for both local and average 

Nusselt numbers were proposed based on their experimental results.  

In a later study, Rice et al. [46] presented an analysis of the liquid film and heat 

transfer characteristics of a free surface controlled liquid jet impingement onto a rotating 

disk. Computations were run for a two dimensional axis–symmetric Eulerian mesh while 

the free surface was calculated with the volume of fluid method. Iacovides et al. [47] 

reported an experimental study of impingement cooling in a rotating passage of semi–

cylindrical cross section. Cooling fluid was injected from a row of five jet holes along the 

centerline of the flat surface of the passage and impinged the concave surface. An 

integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a 

rotating disk surface was presented by Basu and Cetegen [48]. The model considered 

constant temperature and constant heat flux boundary conditions over a range of 

Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. 

Rahman and Lallave [49] numerically studied the convective heat transfer performance 

of a free liquid jet impinging on a rotating and uniformly heated solid disk of finite 

thickness and radius. A generalized average Nusselt number correlation was developed 

from numerical results.  
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2.3 Transient Jet Impingement 

Transient heat transfer during jet impingement has been the subject matter in only 

a few past studies. Moallemi and Naraghi [50] performed a series of transient 

experiments to study the freezing of water impinging vertically on a subzero disk through 

a circular jet. Their experiments characterized the ice layer profiles at different times for 

different values of jet Reynolds number and Stefan number of the surface. Van Treuren et 

al. [51] measured the local heat transfer under an array of impinging jets employing a 

transient method. They used a temperature–sensitive coating consisting of three 

encapsulated thermo chromic liquid crystal materials to determine the local adiabatic wall 

temperature and the local heat transfer coefficient over the complete surface of a target 

plate for various Reynolds numbers. Steady state and transient methods were used by 

Owens and Liburdy [52] in order to study jet impingement cooling of surfaces. Thermo 

chromic liquid crystals were employed to measure the surface temperature which could 

be used to study the local heat transfer coefficient distribution. Kumagai et al. [53] 

investigated transient boiling heat transfer rate of a two dimensional impinging water jet 

on a rectangular surface for jet sub cooling from 14 K to 50 K. They discovered that 

boiling occurs at the moment of jet impingement and generates vapor at that region.  

Lachefski et al. [54] numerically analyzed the velocity field and heat transfer in 

rows of rectangular impinging jets in transient state. Axial and radial jets coming out of 

rectangular nozzles were considered. Sazhin et al. [55] investigated the thermal 

characteristics of jet impingement drying of a moist porous solid using a one dimensional 

transient model. Fujimoto et al. [56] presented a numerical simulation of transient cooling 

of a hot solid by an impinging circular free surface liquid jet. The flow and thermal fields 
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in the liquid as well as the temperature distribution in the hot solid were predicted 

numerically by a finite difference method. Rahman et al. [57] presented the transient 

analysis of a free jet of high Prandtl number fluid impinging on a stationary solid disk of 

finite thickness. Computed results included the velocity, temperature, and pressure 

distributions in the fluid and the local and average heat transfer coefficients at the solid–

fluid interface. Bula–Silvera et al. [58] presented information on transient heat transfer 

process of a free slot jet of high Prandtl number fluid impinging perpendicularly on a 

solid flat substrate of finite thickness containing discrete electronics sources on the 

opposite surface. The geometry of the free surface was determined iteratively. The 

influences of different operating parameters, such as jet velocity, heat flux, plate 

thickness, plate material, and the location of the heat generating electronics, were 

investigated. 

Liu et al. [59] presented a numerical simulation of transient convective heat 

transfer during air jet impingement cooling of a confined multichip module disk. They 

found that a large rate of decrease of chip temperature and average Nusselt number 

happens in the earlier part of the transient. Sarghini and Ruocco [60] presented a transient 

numerical analysis of a planar jet impingement on a finite thickness substrate at low 

volumetric flow rate, including the effects of buoyancy. They found that conduction plays 

a significant role at the initial part of the transient. Fang et al. [61] reported experimental 

transient mixed convection measurements of heat transfer characteristics of jet 

impingement onto a horizontally rotating ceramic–based multichip disk. Their results 

were presented in terms of transient dimensionless temperature distribution on the chip, 

transient heat flux distribution of input power, and local and average Nusselt numbers. 
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2.4 Confined Submerged Jet Impingement 

In the literature a reasonable amount of heat transfer information is available for 

circular disks. These data are typically restricted to either cooling of a stationary disk by 

jet impingement or cooling by pure rotation. The effect of the combination of rotation 

and jet impingement has been considered in only a small number of investigations. 

Additionally, most of these works deal with average heat transfer measurements rather 

than local distributions. As in all convective heat transfer situations, the flow field of an 

impinging liquid jet controls the heat transfer characteristics. In support of this statement, 

much work has been done on submerged confined liquid jets. The following provides a 

sample of some of the previous research related to this study.  

McMurray et al. [62] studied the convective heat transfer of an impinging plane 

jet over a uniform heat flux boundary condition at the wall. To fit their data, they based 

heat transfer correlations on the stagnation flow in the impingement zone and on the flat 

plate boundary layer thickness in the uniform parallel flow zone. Impinging slot jet 

techniques under confinement with a plate parallel to the impingement surface were 

studied by Korger and Krizek [63], Kumada and Mabuchi [64], Miyazaki and Silberman 

[65], and Sparrow and Wong [66], and many of them are in practice in various industrial 

operations. Heat transfer from a stationary surface by liquid jet impingement has been 

reported by Saad et al. [67]. They investigated the effects of Reynolds number, distance 

between nozzle and impingement surface, diameters of impingement and confinement 

surfaces, and the shape of the velocity profile at the nozzle exit. Nakoryakov et al. [68] 

studied, both theoretically and experimentally, the hydrodynamics and mass transfer of a 

radial submerged liquid jet impinging onto a horizontal plate. Their studies measured the 
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wall shear stress, local and mean mass transfer coefficients within the entire flow region 

by an electro–diffusion method in a wide range of liquid flow rates. In addition, simple 

formulas were developed for the calculation of friction factor, liquid layer thickness, 

surface velocity, and convection heat transfer coefficient at stagnation point as a function 

of discharge parameters. Ma et al. [69] reported experimental measurements for local 

heat transfer coefficient during impingement of a circular jet perpendicular to a target 

plate. Both confined and free jet configurations were used. Ethylene glycol and 

transformer oil were used as working fluids.  

Polat et al. [70, 71] measured local and average heat transfer coefficient for a 

confined turbulent slot jet impinging on a permeable surface and moving surface 

considering through flow. Measurements were carried out for a wide range of jet 

Reynolds and through flow velocity. Moreno et al. [72] investigated the mass transfer 

behavior of a confined impinging jet applied to wet chemical processes such as water 

rinsing and metal etching or platting, and the potential applicability to printed wiring 

board’s fabrication. Chang et al. [73] examined the local heat transfer distributions of 

submerged liquid jet under confinement. Their investigation confirmed the local heat 

transfer coefficients trend of a half bell–shaped distribution with respect to radial distance 

from the stagnation point. Hung and Lin [74] proposed an axis–symmetric sub–channel 

model for evaluating local surface heat flux for confined and unconfined cases. Their 

models reveal that no significant deviation occurs for stagnation Nusselt numbers at 

nozzle–to–plate spacing (Hn/dn ≥ 2) while significant deviation exists when Hn/dn<2. 

Experimental results for the distribution of local heat transfer coefficient during confined 
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submerged liquid jet impingement with FC–77 as the working fluid were presented by 

Garimella and Rice [75].  

In addition, Webb and Ma [76] presented a comprehensive review of studies on 

jet impingement heat transfer. They concluded that heat transfer in submerged jets is 

more sensitive to nozzle–to–plate spacing than in free jets, especially when the heat 

transfer surface is beyond the potential core of the jet. Garimella and Nenaydykh [77], 

Fitzgerald and Garimella [78, 79], and Li et al. [80] all considered a confining top plate 

such as the one used at the present study for a submerged liquid jet using FC–77 as the 

working fluid at different volumetric flow rates. However, no rotation was used. Their 

experiments were done to determine the effects of the nozzle geometry on the local heat 

transfer coefficients from a small heat source to a normally impinging, axis–symmetric, 

submerged and confined liquid jet at different nozzle–to–plate spacing and Reynolds 

numbers. They concluded that the effect of the aspect ratio becomes less pronounced as 

the nozzle–to–plate spacing is increased. Ma et al. [81] investigated the radial distribution 

of the recovery factor for a confined impinging jet of high Prandtl number liquid by a 

numerical approach, with emphasis on its physical mechanism. They found that the 

recovery factor is strongly dependent on the Prandtl number, nozzle–to–plate spacing, 

and the velocity profile at the nozzle exit, but basically independent of the Reynolds 

number. 

Abou–Ziyan and Hassan [82] made an experimental study on forced convection 

due to impingement of confined submerged and fully turbulent jets in relation to the 

cooling of engine cylinder heads by water. They concluded that jet impingement can save 

between 50 and 92 percent of the required cooling water compared to simple forced 
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convection. Morris and Garimella [83] computationally investigated the flow fields in the 

orifice and the confinement regions of a normally impinging, axis–symmetric, confined 

and submerged liquid jet. Tzeng et al. [84] numerically studied a series of confined 

impinging turbulent slot jet models. Eight turbulence models, including one standard and 

seven low Reynolds number k–ε models were employed and tested to predict the heat 

transfer performance of multiple impinging jets. Chatterjee and Deviprasath [85] 

numerically investigated the heat transfer to a laminar impinging jet at small nozzle–to–

plate distances. Li and Garimella [86] studied the effects of fluid thermo–physical 

properties on heat transfer from a confined and submerged impinging jet. Local heat 

transfer coefficients were obtained experimentally from a discrete heat source. 

Generalized correlations for heat transfer were reported for the Prandtl number range of 

0.7–25.2.  

Rahman et al. [87] numerically evaluated the conjugate heat transfer of a confined 

jet impingement over a stationary disk using liquid ammonia as the coolant. Ichimiya and 

Yamada [88] presented the heat transfer and fluid flow characteristics of a single circular 

laminar impinging jet, including buoyancy effect in a comparatively narrow space with a 

confining wall. They identified the presence of forced, mixed, and natural convection 

modes of heat transfer as the flow moved downstream in the radial direction. 

Temperature distribution and velocity vectors in the space were obtained numerically. 

The flow and heat transfer characteristics in the cooling of a heated surface by impinging 

slot jets were investigated numerically by Sahoo and Sharif [89]. Computations were 

done for vertically downward–directed two dimensional slot jets impinging on a hot 

isothermal surface at the bottom and confined by a parallel adiabatic surface on top. The 
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local and average Nusselt numbers and skin friction coefficients at the hot surface for 

various conditions were presented. Qing–Guang et al. [90] studied the flow 

characteristics associated with a three dimensional laminar impinging jet issuing from a 

square pipe nozzle. The authors discussed the flow–field characteristics for different 

nozzle–to–plate spacing and Reynolds numbers. El–Gabry and Kaminski [91] presented 

experimental measurements of local heat transfer distribution on smooth and roughened 

surfaces under an array of angled impinging jets. Liquid crystal video thermography was 

used to capture surface temperature data at five different jet Reynolds numbers ranging 

from 15,000 to 35,000. Heat transfer from a row of turbulent jets impinging on a 

stationary surface was investigated by Salamah and Kaminski [92]. The geometric 

parameters of the jet array and the effects of Reynolds number were examined as part of 

this study. Rahman and Mukka [93] developed a numerical model for the conjugate heat 

transfer during vertical impingement of a two dimensional (slot) submerged confined 

liquid jet using liquid ammonia as the working fluid. Lin et al. [94] carried out a series of 

experimental investigations on transient and steady state cooling performance of heat 

sinks with a confined slot jet impingement. 

2.5 Partially–confined Jet Impingement 

Thomas et al. [95] measured the film thickness across a stationary and rotating 

horizontal disk using the capacitance technique, where the liquid was delivered to the 

disk by a controlled semi–confined impinging jet. The aim was to provide an 

understanding of the fundamental hydrodynamics processes which occur in the flow. 

Rahman and Faghri [96] presented the results of a numerical simulation of the flow field 

and associated heat transfer coefficient for the free surface flow of a thin liquid film 
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adjacent to a horizontal rotating disk. The computation was performed for different flow 

rates and rotational velocities using a three dimensional boundary–fitted coordinate 

system. Al–Sanea [97] presented a numerical model that studied three cases: free jet, 

semi–confined jet and semi–confined jet impingement through a crossflow for laminar 

slot–jet impinging on an isothermal flat surface. Rahman and Faghri [98] analyzed the 

processes of heating and evaporation in a thin liquid film adjacent to a horizontal disk 

rotating about a vertical axis at a constant angular velocity. The fluid emanated axis–

symmetrically from a source at the center of the disk and was carried downstream by 

inertial and centrifugal forces.  

Faghri et al. [99] experimentally, analytically, and numerically studied the heat 

transfer effect from a heated stationary or rotating horizontal disk to a liquid film from a 

controlled impinging jet under a partially–confined condition for different volumetric 

flow rates and inlet temperatures for both supercritical and subcritical regions. Rahman 

[100] presented a theoretical analysis of the gas absorption process of a thin liquid film 

formed by the impingement of a partially–confined liquid jet at the center of the disk and 

the subsequent radial spreading of the liquid along the surface of a horizontal rotating 

disk. Shi et al. [101] presented a numerical study to examine the effects of thermo–

physical properties for semi–confined laminar slot jet. The fluid Prandtl number ranged 

from 0.7 to 71. Local, stagnation, and average values of the impingement Nusselt number 

were reported. Dano et al. [102] investigated the flow and heat transfer characteristics of 

confined jet array impingement with crossflow. Digital particle image velocimetry and 

flow visualization were used to determine the flow characteristics. Lallave and Rahman 
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[103] numerically studied the conjugate heat transfer for a partially–confined liquid jet 

impinging on a rotating and uniformly heated solid disk of finite thickness and radius. 

2.6 Chemical Mechanical Polishing Process 

The CMP process was applied primarily on silica (SiO2) and tungsten layers. The 

ever increasing demand in the semiconductor industry for high performance 

microelectronics has resulted in the fabrication of increasingly complex, dense and 

miniaturized devices and circuits [104]. This event has unlocked the doors to a large 

variety of polishing materials such as Al, Cu, Ti, TiN, Ta, W, and their alloys, and 

insulators such as Si3N4, polysilicon and polymeric low–κ materials that are currently 

used as part of the CMP process development. CMP has been adopted in the following 

three areas of integrated circuits (IC) fabrications: The first areas includes the interlayer 

dielectric (ILD) and inter metal dielectric (IMD) planarization to form interconnections 

between devices during multilevel metallization (MLM). The second area covers the 

copper damascene process and the third area involves the process of shallow trench 

isolation (STI). 

In fact, the CMP process in the current semiconductor device manufacturing 

industry needs to be optimized in all the aspects of polishing. Specifically, defects 

induced during the polishing process such as non–uniformity, dishing and erosion, need 

to be reduced in order to get good yields and thus lower operational costs. Improving 

wafer–scale uniformity would at the least reduce many defects during polishing. A 

critical step of the CMP process optimization requires the proper understanding of how 

different parameters influence the complex function of planarization.  
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The characterization of chemical mechanical polishing (CMP) process in recent 

years has traditionally focused on the use of Preston’s equation to model the mechanics 

of the polishing process. Fu and Chandra [105] presented an analytical expression for the 

pressure distributions at the wafer and pad interface during the CMP process. Their 

profiles were used to determine the MRR using Preston’s Equations. Their analytical 

model was compared with the FEM simulations and experimental data observations. The 

volume removal rate properties for a floating polishing process under different 

lubricating conditions were investigated by Su [106]. These lubricating conditions are 

those that make the pad in non–contact with the work surface. Su’s paper tries to confirm 

the lubricating hypothesis and the two possible roles of the abrasive particles on the 

volume removal rate (VRR) of the film surface. Su [106] study result suggests that the 

high removal rate occurs at the lubrication near the boundary between the iso–viscous–

elastic (IE) and iso–viscous rigid (IR) regimes. Zhou et al. [107] experimentally 

investigated the interfacial fluid pressure and friction effects during the polishing process. 

An analytical model was developed to predict the magnitude and the distribution of this 

fluid pressure. The effects of process variables such as normal load, relative velocity, pad 

surface roughness and modulus, fluid viscosity, and target surface curvature, were studied 

by comparing the 1D fluid pressure distributions. The effects of the sub–ambient fluid 

pressure on the material removal rate and the profile with thermally grown SiO2 on single 

crystal silicon wafers were shown as part of their results.  

Luo and Dornfeld [108] numerically investigated the abrasion mechanism in solid 

to solid contact mode for CMP process. Based on assumptions of plastic contact over 

wafer–abrasive and pad–abrasive interfaces, the proposed model integrates process 
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parameters like velocity and pressure. In addition, it integrates input parameters, such as 

wafer and pad hardness, pad roughness, abrasive size and abrasive geometry into the 

same formulation to predict the material removal rate (MRR=ρwNVolremoved). The 

experimental results of the material removal rate were compared with the suggested 

model, showing how accurately it predicts the material removal rate. Much work has 

been done to incorporate the roughness effect into lubrication. Previous studies that 

quantify the surface roughness effect [109, 110] of large systems with small topographies 

proved to be computationally exhaustive, even though getting the topography intricate 

details of the system experimentally could be difficult and impractical. Hence, some work 

[111–115] has been done to employ stochastic concepts to solve the problem. Most of 

these models are limited to one dimensional ridges oriented either transversely or 

longitudinally. It is difficult to extend to three dimensional or anisotropic roughness using 

the stochastic approach. There is also a perturbation method [116, 117] to model 

roughness in lubrication. 

Fu et al. [118] presented the behavior of the hydroxylated layer by a perfectly 

plastic material and mechanistic model for the material removal rate (MRR) during a 

CMP process. The plasticity model was utilized to explore the effects of various design 

parameters (e.g., abrasive shape, size and concentration, and pad rigidity) on the MRR. 

Their model took into account the dependence of pressure and relative velocity, plus 

delineated the effects of pad and slurry properties. Thakurta et al. [119] presented a three 

dimensional chemical planarization slurry model based upon the lubrication theory, using 

the generalized Reynolds equation that includes pad porosity and bending. Their model 

calculated the slurry film thickness and slurry velocity distribution between the wafer and 
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pad, with the minimum slurry film thickness determining the degree of contact between 

the wafer and pad. In addition, the minimum slurry film thickness was examined over a 

range of input variables, namely, applied pressure, carrier and pad velocity, wafer radius 

and curvature, slurry viscosity, and pad porosity and compressibility. Yang [120] 

developed a model for the CMP of copper dual damascene based on the multi–step, 

multi–slurry process platform. His model predicted copper dishing and ILD erosion for 

three steps copper CMP. The first step involved fast copper removal slurry, the second, a 

low pressure step for copper clearing, and a final step for diffusion barrier removal. 

Even though a number of publications have been considered, most of them 

primarily focus on other aspects of the CMP process such as film stress, pattern 

dependencies, pad roughness, material removal rate, abrasive particles, slurry film 

taxonomy, chemicals effects, and pressure and velocity distributions. Only a few examine 

the thermal effects during the planarization process over the wafer surface. The first 

attempt to measure the temperature on the silicon–copper wafer was done by Sampurno 

et al. [121]. A direct temperature measurement set up was developed wherein a novel 

wafer carrier was designed such that the temperature on the back side of the wafer was 

measurable using a thermal imaging infra red (IR) camera. However, in all these research 

works, the reported temperature rise is either the average temperature on the pad surface, 

a predicted average temperature on the wafer surface, or the temperature rise at different 

isolated locations on the wafer. These works reported the overall temperature rise but did 

not provide information about the temperature distributions or contour plots along the 

substrate and pad surfaces. Since the material removal rate during copper CMP is so 

sensitive to temperature, temperature distributions over the entire wafer will significantly 
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affect the uniformity of material removal at the substrate surface. Understanding the 

temperature profile will decrease the with–in–wafer non–uniformity and therefore 

improving the yield by minimizing the number of faulty dies.  

The activation energy of the copper oxidation reaction in the slurry is very low 

[122, 123]. Heat dissipation due to friction can result in a temperature rise at the interface 

and a rise of about 10 K at the polishing interface; it is high enough to double the removal 

rate during copper polishing [124, 125]. Also, it has been noted that a change of 1 K can 

affect the process removal rate during polishing by 7% [124]. Fractions of heat generated 

at the interface are either conducted to the wafer and pad, or convected away by the 

slurry, which acts as a coolant at the interface. The thermal aspect of CMP even though it 

is a significant factor that affects the process output, has not been researched as 

extensively as other parameters like pressure, velocity, slurry flow rate, and chemical 

aspects. 

Research work on polishing pads during the interlayer dielectric (ILD) and metal 

polishing processes that includes the removal rate dependence on temperature and the 

effect of slurry flow rate on wafer and pad temperature rise, etc., has been carried out in 

the recent past to understand the role of temperature at the interface on CMP performance 

[124, 126–129]. Borucki et al. [127, 128] developed a thermal model for ILD polishing 

and then modified it slightly to get a model for copper CMP, which was validated by 

comparing with temperature measurements on the pad during metal CMP. They 

developed a theoretical understanding of the thermal aspects in their research and 

predicted the temperature on the pad for the initial stages (first 60 seconds) of polishing 

by evaluating the model based on transient heat transfer mechanism. White et al., [129] 
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have modeled the dynamic thermal behavior, which explains the energy exchange 

between the pad and slurry. Heat accumulation in the pad and the convection of heat to 

the slurry were explained in their research work. In addition, a transient thermal model 

was proposed to explain the initial behavior observed during CMP. Sorooshian et al. 

[130] investigated the effect of heat generation and thermal inputs on the frictional 

characteristics of interlayer dielectric (ILD) and copper CMP processes. Their coefficient 

of friction results indicated an increasing trend for ILD and copper polishing temperature. 

The dynamic mechanical analysis of the polishing pads revealed links between the 

softening effects of the pad, with rising temperatures, and the increment of shear forces 

resulting from the contact of the pad and wafer during polishing. Additional research 

works on thermal aspects that used the temperature change as an end–point detection, and 

experimental works that involved the temperature rise on polishing pad [131–133], can 

also be found in the literature.  

However, infrared red (IR) experiments and the presented numerical results 

showed that thermal behavior of the slurry around the carrier and across the pad wafer 

interface is still a complex and dynamic process. The temperature profiles on the pad and 

wafer surfaces as a function of radius under the influence parameters like slurry flow rate, 

pad and carrier spinning rates, slurry film thickness, and polishing pressure will provide 

valuable insight into the extent of temperature rise at different locations on the wafer. 
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Chapter 3 Mathematical Models and Computation 

 

 

3.1 Free Liquid Jet Impingement Model  

The physical problem corresponds to an axis–symmetric liquid jet that impinges 

on a solid spinning disk, as shown in figure 3.1. The free jet discharges from the nozzle 

and impinges perpendicularly at the center of the top surface of the disk while the bottom 

surface is subjected to a constant heat flux. The present study considered an 

incompressible, Newtonian, and axis–symmetric flow under a steady state condition.  

 

Figure 3.1  Three dimensional schematic of axis–symmetric free liquid jet impingement 
on a uniformly heated spinning disk. 
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Fluid properties for H2O, NH3, MIL–7808, and FC–77 were obtained from Bejan 

[134], Brady vendor, and 3M Specialty Fluids respectively. The fluid properties such as 

density, viscosity, thermal conductivity, and specific are assumed to be constant for the 

temperature range encountered in the system. The initial jet flow temperature condition 

of Ammonia was set to a lower value due to the feasibility of the fluid to remains in the 

liquid state during the process at normal atmospheric pressure conditions. In terms of 

MIL–7808 the initial temperature value or jet flow conditions was set to a hotter 

temperature to reduce the viscosity effect of the fluid and prevent any clogging issues on 

such small jets or nozzle to target spacing ratios. The thermo–physical properties of the 

solid materials used for the numerical analysis are assumed to remain constant over the 

working temperature range, as shown in Table 3.1.  

Table 3.1 Constant thermo–physical properties used for computational analysis. 

Material 
Reference 

Temperature 
T(K) 

Density 
ρ(kg/m3) 

Dynamic 
viscosity 

µ (kg/m s) 
Pr 

Conductivity 
k(W/mK) 

Specific 
Heat 
Cp 

(J/kgK) 
Constantan 303 8,922 –– –– 22.7 410 

Copper 303 8,954 –– –– 386 383.1 

Silicon 303 2,330 –– –– 140 712 

Aluminum 303 2700 –– –– 202.4 900 

Silver 300 10,500 –– –– 429 235 

Water 310 996 798x10–6 5.49 0.615 4,179 

Ammonia 273 500 87x10–6 1.29 0.3682 5,460 

MIL–7808 375 915 0.0082 124.44   0.1423 2,159 

FC–77 310 1,780 0.001424 23.66 0.063 1,047 
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3.1.1 Governing Equations and Boundary Conditions: Steady State Cooling of 

Spinning Target 

Due to rotational symmetry of the problem the ∂/∂θ terms could be omitted. The 

equations describing the conservation of mass, momentum (r,θ and z directions 

respectively), and energy can be written as Schlichting [135]: 
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The variation of thermal conductivity of solids with temperature encountered in 

the problem was not significant. Therefore, the conservation of energy inside the solid 

can be characterized by the following equation: 
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The following boundary conditions were used to complete the physical problem 

formulation. 
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The boundary condition at the free surface can be expressed as: 
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where Vs is the fluid velocity component along the free surface and n is the coordinate 

normal to the free surface. The boundary conditions at the free surface dn rr2d ≤≤  

include the kinematic condition and balance of normal and shear stresses. The kinematic 

condition relates the velocity components to local slope of the free surface. The normal 

stress balance takes into account the effects of surface tension. In the absence of any 

significant resistance from the ambient air, the shear stress encountered at the free surface 

is essentially zero. Similarly, a negligible heat transfer results in zero temperature 

gradient at the free surface. The local and average heat transfer coefficients can be 

defined as:  
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where intT  is the average temperature at the solid–liquid interface. The local and average 

Nusselt numbers are calculated according to the following expressions: 
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3.1.2 Governing Equations and Boundary Conditions: Transient Cooling of 

Spinning Target 

At t=0, the power supply is turned on and the heat is supplied to the bottom 

surface of the disk starting with an isothermal solid disk and fluid flow that has been 

established on the disk due to jet impingement. The present study considered an 

incompressible, Newtonian, and axis–symmetric fluid flow. The fluid properties were 

dependent on temperature only. The properties of the above fluids in section 3.1 were 

correlated according to the following equations. For water between 300 K<T<411 K; 

Cpf=9.5x10–3.T2–5.93.T+5098.1; kf= –7.0x10–6.T2+5.8x10–3.T–0.4765; ρf= –2.7x10–3.T2 

+1.3104.T+848.07; and ln (µf) = –3.27017–0.0131.T. For ammonia between 273.15 

K<T<370 K; Cpf=0.083.T2–40.489.T+9468; kf=1.159–2.30x10–3.T; ρf=579.81+1.6858.T–

0.0054.T2; and ln (µf) = –5.33914–0.0115.T. For MIL–7808 between 303 K<T<470 K; 

Cpf=903.8+3.332.T; kf=0.18–1x10–4.T; ρf=1181–0.708.T; and ln (µf) =3.2436–0.0229.T. 
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For FC–77 between 273 K<T<380 K; Cpf=589.2+1.554.T; kf=0.0869–8x10–5.T; 

ρf=2,507.2–2.45.T; and ln (µf) = –2.38271–0.0145.T. The initial jet flow temperature 

condition of Ammonia was set to a lower value due to the feasibility of the fluid to 

remains in the liquid state during the process at normal atmospheric pressure conditions. 

In terms of MIL–7808 the inlet jet flow temperature value was set to a hotter temperature 

to reduce the viscosity effect of the fluid and prevent any clogging issues on such small 

jets or nozzle to target spacing ratios. In these correlations, the absolute temperature T 

was used in K. 

Due to rotational symmetry of the problem the ∂/∂θ terms could be omitted. The 

equations describing the conservation of mass, momentum (r,θ and z directions 

respectively), and energy can be written as Burmeister [136]: 
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The conservation of energy inside the solid can be defined as: 
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Equations (3.1.19–3.1.24) were subjected to the boundary conditions described by 

equations (3.1.7–3.1.14). The solid disk was assumed to be at thermal equilibrium with 

jet fluid before the transient heating of the plate was turned on. The velocity field at this 

condition was determined by solving only the continuity and momentum equations 

(3.1.19–3.1.22) in the fluid region. Thus,  

At t=0: Tf =Ts=Tj , ( )isothermalVVi

��

=                             (3.1.25) 

To complete the mathematical formulation it is necessary to define different 

relevant parameters, such as local and average heat transfer coefficients, and local and 

average Nusselt numbers. The local and average heat transfer coefficients and Nusselt 

numbers can be defined according to equations (3.1.15–3.1.18).  

3.2 Confined Liquid Jet Impingement Model  

A three dimensional representation of the confined axial jet impinging 

perpendicularly on a uniformly heated spinning solid wafer corresponds to two parallel 

disks, as shown in figure 3.2. The liquid jet is discharged through an orifice at the center 

of the top disk. The remainder of the top disk acts as an insulated stationary confinement 

plate. The bottom disk (wafer) is subjected to a uniform rotational velocity. Heat sources 

are located at the bottom of the wafer producing a constant heat flux along the surface. 

Heat is conducted through the wafer and convected out to the fluid adjacent to the top 

surface of the wafer, as shown in figure 3.2. The present study considered an 

incompressible, Newtonian, and axis–symmetric flow under a steady state condition. 
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Figure 3.2  Three dimensional schematic of a confined axial jet impinging on a 
uniformly heated and spinning disk. 

 

Fluid properties for H2O, NH3, MIL–7808, and FC–77 were obtained from Bejan 

(1995) [134], Brady vendor, and 3M Specialty Fluids respectively. The fluid properties 

were assumed to be constant for the temperature range encountered in the system, as 

shown in Table 3.1. 

3.2.1 Governing Equations and Boundary Conditions: Steady State Cooling of 

Spinning Target 

Due to rotational symmetry of the problem the ∂/∂θ terms could be omitted. The 

equations describing the conservation of mass, momentum (r,θ and z directions 

respectively), and energy can be written as [135]: 
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The variation of thermal conductivity of solids with temperature encountered in the 

problem was not significant. Therefore, the conservation of energy inside the solid can be 

characterized by the following equation: 
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To complete the set of equations to be solved, equations (3.2.1–3.2.6) were 

subjected to the following boundary conditions: 

0
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jTfT,0θVrV,jVzV:2ndr0,nHzAt ===−=≤≤=          (3.2.12) 
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The local and average heat transfer coefficients can be defined as: 

jTintT
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where intT  is the average temperature at the solid–liquid interface. The local and 

average Nusselt numbers are calculated according to the following expressions: 

fk

dh
Nu n⋅

=                             (3.2.17) 

fk

dh
avNu nav ⋅

=                            (3.2.18) 

3.2.2 Governing Equations and Boundary Conditions: Steady State Cooling of 

Spinning Wall 

A schematic of the physical problem is shown in figure 3.3. An axis–symmetric 

liquid jet is discharged through a nozzle and impinges at the center of a stationary solid 

disk subjected to a uniform heat flux. The top plate acts as an insulated confinement 

surface spinning at constant angular velocity. Heat is conducted through the disk and 

convected out to the fluid adjacent to the top surface of the stationary disk, as shown in 
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figure 3.3. The present study considered an incompressible, Newtonian, and axis–

symmetric flow under a steady state condition. The variation of fluid properties with local 

temperature was taken into account. Due to rotational symmetry of the problem the ∂/∂θ 

terms could be omitted. 

 
 

Figure 3.3  Three dimensional schematic of axis–symmetric confined spinning disk 
liquid jet impingement on a uniformly heated disk. 

 

The equations describing the conservation of mass, momentum (r,θ and z 

directions respectively), and energy can be written as seen in [136]: 

( ) ( ) 0zVfρ
zrrVfρ

rr

1
=

∂
∂

+
∂
∂                        (3.2.19) 


















∂

∂
−−

∂

∂
⋅

∂
∂

+
∂
∂

−=









−

∂

∂
+

∂

∂

z
zV

r
rV

r
rV

2rfµ
3

2

rr

1

r

p

r

V

z
rV

zV
r
rV

rVfρ
2
θ








 ⋅
−

∂

∂
+

∂

∂
⋅+





















∂

∂
+

∂

∂

∂
∂

+
r

rV2

z
zV

r
rV

r
fµ

3

2

r
zV

z
rV

fµ
z

           (3.2.20) 

Nozzle 

Stationary target 

Vθ=Ω⋅r 

Spinning 
confined wall 

qw 

rb

 dn 

 

Ω 

Hn 
 Vj 

θ 

rd 



www.manaraa.com

 50 























∂

∂

∂
∂

+


































∂
∂

∂
∂

=









+

∂

∂
+

∂

∂

z
θV

fµ
zr

θV

r
rfµr

rr

1

r
θVrV

z
θV

zV
r
θV

rVfρ 2
2

        (3.2.21) 

+






















∂

∂
+

∂

∂

∂
∂

+
∂
∂

−−=










∂

∂
+

∂

∂

r
zV

z
rV

frµ
rr

1

z

p
gfρ

z
zV

zV
r
zV

rVfρ 
















∂

∂
−−

∂

∂

∂
∂

r
rV

r
rV

z
zV

2fµ
3

2

z
   (3.2.22) 

( ) ( )
+











∂

∂

∂
∂

+










∂

∂

∂
∂

=










∂

∂
+

∂

∂

z
fT

fk
zr

fT
rfk

rr

1

z
fTfCp

zV
r

fTfCp
rVfρ

+















−

∂

∂
+








∂

∂
+








+








∂

∂
⋅

2222

r
θV

r
θV

2

1

z
zV

r
rV

r
rV

fµ2














∂

∂
++

∂

∂
−








∂

∂
+

∂

∂
+








∂

∂ 222

z
zV

r
rV

r
rV

3

1

r
zV

z
rV

2

1

z
θV

2

1
   (3.2.23) 

The variation of thermal conductivity of solids with temperature is not significant. 

Therefore, the conservation of energy inside the solid can be characterized by the 

following equation: 

0
z

sT

r
sT

r

1

r

sT
sα

2

2

2

2

=












∂

∂
+











∂

∂
+

∂

∂
                      (3.2.24) 

To fulfill the physical formulation of equations (3.2.19–3.2.24) it is necessary to 

use the boundary conditions described by equations (3.2.7–3.2.12) and update the 

boundary conditions of the target and confined wall currently defined by equations 

(3.2.25–3.2.26). 

0
z
fT

,0zVrVr,θV:rr2nd,nHzAt d =
∂

∂
==⋅Ω=≤≤=         (3.2.25) 

z
fT

fk
z
sT

sk,fTsT,0θVzVrV:rr0,0zAt d ∂

∂
=

∂

∂
====≤≤=      (3.2.26) 

The mathematical formulation was completed with the definition of relevant 

parameters, such as local and average heat transfer coefficients, and local and average 

Nusselt numbers according to equations (3.2.15–3.2.18). 
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3.3 Partially–confined Liquid Jet Impingement Model 

An axis–symmetric liquid jet is discharged through a nozzle and impinges at the 

center of the top surface of a solid circular disk or wafer spinning with a uniform angular 

velocity about the z–axis. 

 

Figure 3.4 Three dimensional schematic of axis–symmetric partially–confined liquid 
jet impingement on a uniformly heated spinning disk. 

 

The insulated confinement plate attached to the nozzle is smaller in diameter than 

the disk which allows the formation of free surface flow when the fluid exits the confined 

region, as shown in figure 3.4. The present study considered an incompressible, 

Newtonian, and axis–symmetric laminar flow under a steady state condition. The 

variation of fluid properties with local temperature was taken into account. 

 

 

 

 w 
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3.3.1 Governing Equations and Boundary Conditions: Steady State Cooling of 

Spinning Target 

Due to rotational symmetry of the problem the ∂/∂θ terms could be omitted. The 

equations describing the conservation of mass, momentum (r,θ and z directions 

respectively), and energy can be written as [136]: 
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The conservation of energy inside the solid can be defined as: 
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The following boundary conditions were used. 

0
r
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The boundary condition at the free surface can be expressed as: 
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where VS is the fluid velocity component along the free surface and n is the coordinate 

normal to the free surface. The boundary conditions at the free surface were obtained by 

satisfying the kinematic condition relating the slope of the free surface with velocity 

components as well as from the balance of normal and shear stresses at the free surface. 

For steady flow of a Newtonian fluid normal stress balance essentially reduces to an 
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equation relating the pressure and surface tension as shown by White [137]. The shear 

stress encountered from the ambient gaseous medium is expected to be negligible. 

Similarly, the heat transfer from the free surface to the ambient gas is also assumed to be 

negligible. Relevant parameters, such as local and average heat transfer coefficients and 

local and average Nusselt numbers are defined according to equations (3.2.15–3.2.18) to 

complete the mathematical formulation. 

3.3.2 Governing Equations and Boundary Conditions: Steady State Cooling of 

Co–Rotating Target and Confined Wall  

An axis–symmetric liquid jet is discharged through a nozzle and impinges at the 

center of a solid uniformly heated circular disk that spins at constant angular velocity 

about the z–axis, as shown in figure 3.5. The insulated top plate acts as a confined 

spinning wall that ends allowing the exposure of the fluid to a free surface boundary 

condition.  

 

Figure 3.5 Three dimensional schematic of axis–symmetric partially–confined liquid 
jet impingement on a uniformly heated disk with two spinning boundaries. 

 

w 
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The present study considered an incompressible, Newtonian, and axis–symmetric 

flow under a steady state condition. The variation of fluid properties with local 

temperature was taken into account. Fluid properties for H2O, NH3, MIL–7808, and FC–

77 were obtained from Bejan [134] and Bula [138]. The physical formulation of the 

above problem is defined in section 3.3.1. The equations that described the conservation 

of mass, momentum (3.3.1–3.3.6) and boundary conditions (3.3.7 through 3.3.12, and 

3.3.15) remain the same. The new boundary conditions at the target and confined wall 

were defined by the following equations: 
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The mathematical formulation was completed by the definition of relevant 

parameters, such as local and average heat transfer coefficients, and local and average 

Nusselt numbers. In addition, the local and average heat transfer coefficients and Nusselt 

numbers are defined according to equations (3.2.15–3.2.18). 

3.3.3 Governing Equations and Boundary Conditions: Transient Cooling of 

Spinning Target 

The transient conjugate heat transfer of both solid and fluid regions of a partially–

confined liquid jet impinging on a rotating and uniformly heated solid disk of finite 

thickness and radius are examined as part of this study. A constant heat flux was imposed 

at the bottom surface of the solid disk at t=0 and heat transfer was monitored for the 

entire duration of the transient until the steady state condition was reached. 
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After an isothermal fluid flow has been established on the disk, at t=0, the power 

source is turned on to deliver a uniform heat flux at the bottom surface of the disk while 

the confinement plate is kept insulated. Due to symmetry of the problem about the axis of 

rotation, all ∂/∂θ terms can be dropped out. The equations for the conservation of mass, 

momentum (r,θ and z directions respectively), and energy for incompressible flow of a 

Newtonian fluid with temperature dependent properties can be written as [136]: 
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The conservation of energy inside the solid can be defined as: 
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Equations (3.3.18–3.3.23) are subjected to the boundary conditions described by 

equations (3.3.7–3.3.15). The solid disk was assumed to be at thermal equilibrium with 
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jet fluid before the transient heating of the plate was turned on. The velocity field at this 

condition was determined by solving only the continuity and momentum equations 

(3.3.18–3.3.21) in the fluid region. Thus,  

At t=0: Tf=Ts = Tj, ( )isothermalVVi

��

=                             (3.3.24) 

To complete the mathematical formulation it is necessary to define different relevant 

parameters, such as local and average heat transfer coefficients, and local and average 

Nusselt numbers. In addition, the local and average heat transfer coefficients and Nusselt 

numbers are defined according to equations (3.2.15–3.2.18). 

3.4 Three Dimensional Chemical Mechanical Polishing Model 

The controlled volume under study of the CMP process, sketched in figure 3.6, 

consists of the wafer surface, slurry interface and polishing pad subjected to a variable 

heat flux boundary condition at its polished surface. The variable heat flux is driven by 

the pad coefficient of friction, the down force pressure, the radial distance measure from 

the pad center and the relative spinning rate of the pad and carrier (qw =µfr
.P.Vθpc).  

 

 
Figure 3.6 Three dimensional CMP control volume outline. 
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Figure 3.6 shows that the inlet of the slurry (alumina) covers half of the wafer 

circumference, and the other half is considered as being the flow outlet. The slurry flow 

is driven to the inlet by the spinning rate of the platen that holds the polishing pad. The 

centrifugal motion assumption of the slurry is valid for the closeness of the boundary 

layer thickness of the flow that is going to pass through a confined area with a magnitude 

of the micrometer scale size. This observation is in agreement with work done by Lallave 

and Rahman [103], and Brodersen et al. [38] that studied the characteristics of a 

predominant rotational driven flow versus a jet impingement momentum flow. A contact 

area of a flat pad surface was used as part of the control volume on this model. The 

gravity and surface tension effects and angular acceleration of the platen was taken into 

account as part of the slurry film thickness description.  

The present model ignores the non–uniformity of the slurry particles and their 

height distribution, including the heat transfer effect during conditioning and all losses of 

heat along the wafer retaining ring. The offset thickness between the ring and wafer is not 

taken into account as part of the CMP model set up. As part of the numerical analysis and 

experimental set up, this model starts with an isothermal slurry–to–substrate boundary 

condition and a thin layer of slurry that has been established on the pad as part of the 

polishing process. In addition, a variable heat flux is input into the numerical problem as 

the product of the mechanical abrasion of the pad, and chemical interactions of the slurry 

at the substrate surface.  

3.4.1 Governing Equations and Boundary Conditions: Steady State 

The Navier–Stokes equations were used to simulate the fluid mechanics of an 

incompressible (constant–density and viscosity) Newtonian flow that reaches the steady 
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state condition throughout the CMP process. The fluid properties used for the numerical 

simulation such as density, viscosity, thermal conductivity, and specific heat are assumed 

to remain constant over the working temperature range. Detailed explanations on the 

formulation of the governing equations describing the conservation of mass, momentum 

(r,θ, and z directions respectively), and energy using cylindrical coordinate system can be 

found in [136]: 
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The Navier–Stokes equations (3.4.2–3.4.4) are useful for the hydrodynamic 

regime where the combined roughness (s), of the two opposing surfaces is smaller than 

the film thickness, hsl, and there is little or no contact between the asperities of the 

surfaces. For the slurry film and roughness ratio (hsl/s) >> 3, the roughness effects are not 

important and the smooth film Navier–Stokes equations are sufficiently accurate. When 

the slurry film and roughness ratio (hsl/s) are equal to 3, the roughness effects become 

important. When hsl/s < 3, contacts between asperities from the opposing surfaces can 

occur and the system goes into the mixed lubrication regime. In CMP, the surfaces 

involved are a relatively flat and rigid wafer beneath a rough and soft pad. Another sign 
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of intimate wafer and pad contact is when pad glazing is observed. Thus, a mixed 

lubrication approach has to be taken [139]. 

The energy equation for incompressible slurry properties and negligible viscous 

dissipation can be written as: 












∂

∂
+

θ∂

∂
+








∂

∂
∂
∂

α=
∂

∂
+

θ∂
∂

+
∂

∂ θ
2
sl

2

2
sl

2

2
sl

sl
sl

z
slsl

r
z

TT

r

1

r

T
r

rr

1

z

T
V

T

r

V

r

T
V             (3.4.5) 

The energy transferred in the controlled volume is due to mechanical abrasion of 

the pad and slurry particles on the wafer surface, and chemical energy associated with 

slurry chemistry and enthalpy. For neutral slurries, the major chemical energy source is 

the enthalpy. In a good number of thermal systems, there exist heat loss mechanisms that 

can be neglected as part of the analysis. The thermal losses from the rubber and plastic 

bladder between the wafer and steel polishing carrier were neglected due to their lower 

thermal conductivity and insulator properties. As we know, most of the pads used for 

experimentation, like IC–1,000 and FX–9, are made of polyurethane, a material 

considered to be a thermal insulator as such. Therefore, we neglect any loss from 

conduction through the pad as part of our numerical analysis.  

The above analysis concentrates on the heat loss mechanisms associated with 

download pressure, slurry flow rate, relative spinning velocity of pad and wafer, and 

slurry film thickness under different coefficients of friction. To define the problem 

completely, appropriate boundary conditions were required on all boundaries of the 

computational domain. The boundary conditions at the inlet, outlet, wafer surface, and 

pad surface respectively have the following form: 

jslz1prslpw1pww TT,0VV,rV: 
22

0,zh,rr)rr(At ===⋅Ω=
π

≤θ≤
π

−≤≤−−≤≤+− θ     (3.4.6) 
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atmsl2w pp: 
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0,zh,0rrAt =
π
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Figure 3.7 Wafer–pad relative velocity profile. 

The relative co–tangential velocity effect of both surfaces along the two axes of 

rotation is shown in figure 3.7. The co–tangential velocity effect (Vθpc) was used to 

determine the magnitude of the variable heat flux input into the system. The carrier pad 

relative velocity in cylindrical coordinates system with the origin at the pad center can be 

derived as: 

( ) ( )[ ]210p2cp
22

2
2

cpθpc rΩcosθrΩΩθsinrΩΩV −⋅+⋅−+⋅−=          (3.4.10) 

 r2 
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The numerical equations (3.4.1–3.4.5) were subjected to the boundary conditions 

described by equations (3.4.6–3.4.10) as part of the mathematical formulation of present 

model. Subsequently, the steady state temperature contours or profile as the index of 

energy dissipation along the center of wafer surface, and pad interface are plotted as part 

of the CMP model solution. In addition, the local heat transfer coefficients for wafer and 

pad are calculated according to the following expressions: 

)( slw

pcfr
w

TT

VP
h

−

⋅⋅µ
=

θ                           (3.4.11) 
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⋅⋅µ
=
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3.4.2 Governing Equations and Boundary Conditions: Transient 

The current three dimensional CMP model of substrate surface, fluid region 

(slurry) and pad surface as a control volume were studied under the exposure of a 

variable heat flux at t=0, due to the mechanical abrasion of the pad and slurry particles. 

The chemical interactions of the slurry acts and supplies the heat onto the surface of the 

wafer, starting with an isothermal solid–fluid boundary condition and a thin film of slurry 

that has been established on the wafer as part of polishing process. The model 

description, including geometry, model set up, and assumptions are described in section 

3.4.1. 

The Navier–Stokes equations were used to simulate the fluid mechanics during 

the transient stage of the CMP process. The slurry properties (water plus alumina) were 

assumed to be constant for the temperature range encountered in the system. Detailed 

explanations on the formulation of the governing equations describing the conservation 
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of mass, momentum (r,θ, and z directions respectively), and energy using cylindrical 

coordinate system can be found in [136]: 

The conservation of mass of the slurry can be written in the most general form as: 
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The conservation of momentum (Navier–Stokes equations) for constant density 

and viscosity liquid or incompressible slurry properties can be written as: 
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The energy equation for incompressible slurry properties and negligible viscous 

dissipation can be written as: 
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Equations (3.4.13–3.4.17) were subjected to the boundary conditions described by 

equations (3.4.6–3.4.10). The wafer surface is assumed to be at thermal equilibrium with 

the alumina (Al2O3) slurry before the transient heating of the polishing takes place. The 

velocity field at this condition is determined by solving only the continuity and 

momentum equations (3.4.13–3.4.16) in the fluid region. Thus,  

At t=0: Tsl=Tp=Tw, ( )isothermalVVi

��

=                         (3.4.18) 
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By solving the numerical problem, the transient temperature contours or profile as 

the index of energy dissipation of the wafer surface, the slurry and pad interface, were 

shown as part of the results. In addition, as part of this study, temperature distributions as 

function of time on isolated nodes were examined for the entire transient process. This 

was done under a different set of physical parameters, such as slurry flow rates, polishing 

pressures, carrier and pad spinning rates, and slurry film thicknesses. To complete the 

mathematical formulation the local heat transfer coefficients for wafer and pad surfaces 

are defined according to equations (3.4.12–13). 

3.5 Numerical Computation 

3.5.1 Free Surface Liquid Jet Impingement Steady State and Transient Process 

The governing equations (3.1.1–3.1.6) of Prob. #5 and (3.1.19–3.1.24) of Prob. #6 

and the boundary conditions (3.1.7–3.1.14) and (3.1.25) just for the transient conditions 

described in the preceding sections (3.1.1 and 3.1.2), were solved using the Galerkin 

finite element method [140]. Four node quadrilateral elements were used. A scaled dense 

grid distribution was used to adequately capture large variations near the solid–fluid 

interface of the meshed domain, as shown in figure 3.8. 

 

Figure 3.8 Axis–symmetric free surface liquid jet impingement mesh plot. 
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In each element, the velocity, pressure, and temperature fields were approximated 

which led to a set of equations that defined the continuum. The solution of the resulting 

non–linear equations was carried out using the Newton–Raphson method. The approach 

used to solve the free surface problem described here was to introduce a new degree of 

freedom representing the position of the free surface. This degree of freedom was 

introduced as a new unknown into the global system of equations.  

Due to non–linear nature of the governing transport equations, an iterative 

procedure was used to arrive at the solution for the velocity and temperature fields. In 

order to determine the initial velocity field (Vi), the equations for the conservation of 

mass and momentum were solved. Since the solution of the momentum equation required 

only two out of the three boundary conditions at the free surface, the third condition that 

relates the slope of the free surface to local velocity components at the free surface was 

used to upgrade the position of the free surface at the end of each iteration step. The 

Newton–Raphson solver used spines to track the free surface and re–arranged grid 

distribution with the movement of the free surface. These spines are straight lines passing 

through the free surface nodes and connecting the nodes underneath the free surface. The 

free surface movement affected only nodes along the spine.  

Once the final free surface height distribution and the flow–field for the 

isothermal equilibrium condition were reached, the power of the heat source was turned 

on and heat began to flow. Then the computation domain included both solid and fluid 

regions. The continuity, momentum, and energy were solved simultaneously as a 

conjugate problem taking into account the variation of fluid properties with temperature. 

The computation covered the entire transient period all the way to the steady state 
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condition. Because of large changes at the outset of the transient and very small changes 

when the solution approached the steady state condition, a fixed time step was used to 

cover the earlier part of the transient up to 25 seconds, and a variable time step was used 

for the rest of the computation. At each time step, the solution was considered converged 

when relative change in field values from a particular iteration to the next, and the sums 

of the residuals for each variable became less than 10–6. 

The characteristics of the flow are controlled by three major physical parameters: 

the Reynolds number, Rej=Vj dn /νf, the dimensionless nozzle–to–plate spacing ratio, 

β=Hn/dn, and the Ekman number, Ek=νf /
.4.Ω rd

2. The values of Reynolds number was 

limited to a maximum of 1,800 to stay within the laminar region. The materials properties 

used for the numerical simulation such as density, viscosity, thermal conductivity, and 

specific heat are assumed to remain constant over the working temperature range. The 

properties of the following solid materials: Constantan, copper, aluminum, silicon, and 

silver were obtained from Özisik [141].  

The nozzle diameter opening was varied over the range of 1.20 to 3.60 mm. The 

disk radius was kept at a constant value of 7.6 mm and the heat flux (qw) was also kept 

constant at 250 kW/m2 for steady state conditions (Prob. #5) and 125 kW/m2 transient 

state conditions (Prob. #6). The incoming fluid jet temperature (Tj) was 310 K for water 

and FC–77, 303 K for ammonia (at a pressure of 20 bars), and 375 K for MIL–7808. The 

thickness of the disk was varied over the following values: 0.20, 0.40, 0.60, 0.90, 1.2, 1.5 

and 2.0 mm. The jet impingement height or the distance between the nozzle and disk was 

set at the following values: 6.6x10–4, 9.0x10–4, 1.5x10–3, 2.4x10–3, 3.6x10–3, 4.8x10–3, and 

6.0x10–3 m at (Prob. #5), conversely the jet impingement height was kept at a constant 
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value of 3.2 mm for Prob. #6. However, for comparison with other numerical and 

experimental results the impingement heights were set to: 2.4, 1.5, 0.9, and 0.66 mm 

respectively. The spinning rate (Ω), and flow rate (Q) were varied from 13.10 to 157.08 

rad/s or 125 to 1,500 RPM and 3.360x10–7 to 1.133x10–6 m3/s; respectively at Prob. #5. 

The range for Reynolds number and Ekman number were set at: Re=445 to 1,800 and 

Ek=2.21x10–5 to 2.65x10–4. On Prob. #6 the spinning rate (Ω) was varied from 0 to 52.36 

rad/s or 0 to 500 RPM, that correspond to the range of Ekman number from ∞ to 

6.62x10–5. In addition, the flow rate was varied from 3.775x10–7 to 1.057x10–6 m3/s, for a 

range of Reynolds number from 500 to 1,400. The possibility of getting into turbulent 

flow due to disk rotation was checked using the laminar–turbulent transition criterion of 

Popiel and Boguslawski [36] and Vanyo [142]. All runs used in the study checked out to 

be laminar. 

3.5.2 Confined Submerged Liquid Jet Impingement Steady State Process 

The governing equations along with the boundary conditions were solved using 

the Galerkin finite element method as demonstrated by Fletcher [140]. Four node 

quadrilateral elements were used. For each element, the velocity, pressure, and 

temperature fields were approximated which led to a set of equations that defined the 

continuum. Due to non–linear nature of the governing transport equations, an iterative 

procedure was used to arrive at the solution for the velocity and temperature fields. The 

solution of the resulting non–linear differential equations was carried out using the 

Newton–Raphson method. The solution was considered converged when the field value 

did not change from one iteration to the next and the sum of the residuals for all the 

dependent variables was less than a predefined tolerance value; in this case, 10–6.  
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The number of elements required for accurate results was determined from a grid 

independence study. Figure 3.9 shows an unstructured grid of the confined region in 

which the size of the elements near the solid–fluid interface was made smaller to 

adequately capture the large variations in velocity and temperature near wall. 

 

Figure 3.9 Axis–symmetric confined liquid jet impingement mesh plot. 

3.5.2.1 Stationary Confined Wall with Spinning Target 

The top disk remains stationary while the bottom disk rotates at a uniform angular 

velocity (Ω) of 5.236 to 104.72 radians/sec or 50 to 1,000 RPM to cover different 

scenarios. The values of Reynolds number was limited over 750 to avoid any fluid 

boiling condition up to a maximum of 2,000 to stay within the laminar region. The orifice 

nozzle and the solid wafer disk have radii of 0.3 and 7.6 mm respectively; additionally 

the solid wafer thickness was kept at a value of 0.3 mm. The jet impingement height was 

varied from: 7x10–4 to 3.2x10–3 m. The heat flux (qw) and jet temperature were kept 

constant at 250 kW/m2 and 310 K respectively. The fluid and solid material properties are 

assumed to be constant for the temperature range encountered in the system, as shown in 

Table 3.1.  
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3.5.2.2 Spinning Confined Wall with Stationary Target 

The bottom disk remains stationary while the top disk rotates at a uniform angular 

velocity. The values of Reynolds number was limited to a maximum of 1,500 to stay 

within the laminar region. The nozzle opening and the solid wafer disk have radii of 0.6 

and 6.0 mm respectively. The heat flux (qw) was kept constant at a value of 250 kW/m2. 

The incoming fluid jet temperature (Tj) was 310 K for water and FC–77, 303 K for 

ammonia (at a pressure of 20 bars), and 375 K for MIL–7808. The thickness of the disk 

was varied over the following values: 0.3, 0.6, 0.9, 1.2, 1.5 and 2.0 mm. The jet 

impingement height or the distance between the nozzle and disk was set at the following 

values: 3x10–4, 6x10–4, 9.0x10–4, 1.2x10–3, 2.4x10–3, 3.6x10–3, 4.8x10–3, and 6x10–3 m. 

The spinning rate (Ω) was varied from 0 to 78.54 rad/s or 0 to 750 RPM. The flow rate 

was varied from 3.78x10–7 to 1.13x10–6 m3/s. The range for Reynolds number and Ekman 

number ranged from: Re=500 to 1,500 and Ek=7.08x10–5 to ∞ respectively. Using the 

laminar–turbulent transition criterion used by Popiel and Boguslawski [36] and Vanyo 

[142], all runs used in the paper checked out to be laminar.  

The simulation was carried out for a number of disk materials, namely 

Constantan, copper, silicon, and silver. The properties of solid materials were obtained 

from Özisik [141]. Fluid properties for H2O, NH3, MIL–7808, and FC–77 were obtained 

from Bejan [134], the Brady vendor, and 3M Specialty Fluids respectively. The 

properties of the above fluids were correlated according to the equations shown in section 

3.1.2. In these correlations, the absolute temperature T was used in K. 
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3.5.3 Partially–confined Submerged Liquid Jet Impingement Steady State and 

Transient Process 

The purpose of a finite element method is to break down the continuum problem, 

of essentially an infinite number of degrees of freedom, to a finite number of degrees by 

discrete sizing the continuum into a number of simple shaped elements. The governing 

equations along with the boundary conditions of section (3.3.1 to 3.3.3) were solved 

using the Galerkin finite element method [140]. Four node quadrilateral elements were 

used. For each element, the velocity, pressure, and temperature fields were approximated 

which led to a set of discretized equations that defined the continuum.  

In order to determine the initial velocity field (Vi), the equations for the 

conservation of mass and momentum were solved. The number of elements required for 

accurate results was determined from a grid independence study. The size of the elements 

near the solid–fluid interface was made smaller to adequately capture large variations in 

velocity and temperature in that region, as shown in figure 3.10. 

 

Figure 3.10 Axis–symmetric partially–confined jet impingement mesh plot. 
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Due to non–linear nature of the governing differential equations the Newton–

Raphson method was used to arrive at the solution for the velocity and temperature fields. 

The solver used spines to track the free surface and re–arranged grid distribution with the 

movement along the free surface. The movement of the free surface affected only the 

nodes along the spine. The approach used to solve the free surface problem described 

here was to introduce a new unknown δ representing the position of the free surface in 

the global system of equations. In order to start the computation, initial values of δ were 

assigned to all nodes at the free surface. A linear distribution with δ=Hn at r=rp to δ≈Hn/2 

at r=rd was used as the initial guess. Since the solution of the momentum equation 

required only two out of the three boundary conditions at the free surface, the third 

condition in equation (3.3.15) was used to upgrade the position of the free surface at the 

end of each iteration step. Then the velocity components at the free surface were used to 

check the fulfillment of the kinematic condition (the first condition in equation 3.3.15). 

The value of the free surface height (δ) was upgraded by applying a correction obtained 

from the required slope of the free surface at each free surface node. In order to preserve 

the numerical stability during this iterative solution for δ a relaxation factor of 0.1 was 

used. Once a new location for the free surface node has been determined, the location of 

all fluid nodes underneath the free surface extending to the solid–fluid interface were 

adjusted keeping the same grid ratio. It may be noted that the adjustment was done only 

in the vertical direction (along the z axis) and only in the region of rp < r < rd and 0 < z <δ. 

The iterative solution for the determination of the free surface height distribution was 

continued by solving the conservation of mass and momentum equations and upgrading 

the grid structure underneath the free surface.  
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Once the final free surface height distribution was obtained no further change in δ 

was needed and the flow–field for the isothermal equilibrium condition was reached, the 

power source was turned on and the heat began to flow. Then the energy equation (3.3.5) 

was solved simultaneously, along with the conservation of mass and momentum 

equations (3.3.1–3.3.4) as a conjugate problem taking into account the variation of fluid 

properties with temperature to determine the final distribution of velocity, pressure, and 

temperature. The computation covered the entire transient period all the way to the steady 

state condition. Because of large changes at the outset of the transient and very small 

changes when the solution approached the steady state condition, a fixed time step was 

used to cover the earlier part of the transient up to 25 seconds, and a variable time step 

was used for the rest of the computation. The solution was considered converged when 

relative change in field values from a particular iteration to the next, and the sums of the 

residuals for each variable became less than 10–6. The conservation of mass was 

independently checked by calculating the flow rate at the outlet (r=rd) from computed 

velocity field and comparing that with fluid intake at the nozzle (z=Hn). The difference 

was essentially zero.  

The characteristics of the flow are controlled by three major physical parameters: 

the Reynolds number, Rej=Vj dn /νf, the dimensionless nozzle–to–plate spacing ratio, 

β=Hn/dn, and the Ekman number, Ek1,2=νf /
.4.Ω1,2

.rd
2. The values of Reynolds number was 

limited to a maximum of 900 to stay within the laminar region. The nozzle opening and 

the heated target disk have radii of 0.6 and 6.0 mm respectively. The heat flux (qw) was 

kept constant at 125 kW/m2. The incoming fluid jet temperature (Tj) was 310 K for water 

and FC–77, 303K for ammonia (at a pressure of 20 bars), and 375 K for MIL–7808. The 
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thickness of the disk (b) was varied over the values of: 0.30, 0.60, 1.0, 1.5 and 2.0 mm. 

The jet impingement height or the distance between the nozzle and disk was set at the 

following values: 3x10–4, 6x10–4, 9.0x10–4, and 1.2x10–3 m. The spinning rate (Ω) was 

varied from 0 to 78.54 rad/s or 0 to 750 RPM. The flow rate was varied from 6.65x10–7 to 

2.72x10–6 m3/s. These values covers the range of Ekman numbers of Ek1,2=7.08x10–5 to 

∞ and Reynolds numbers of 220 to 900 respectively. The laminar–turbulent transition 

criterion of Popiel and Boguslawski [36] and Vanyo [142] confirms that all runs in this 

study were laminar.  

The solid and fluid properties were obtained from Özisik [141], Bejan [134], and 

Bula [138].The fluid properties are correlated according to the following equations. For 

water between 300 K<T<411 K; Cpf=9.5x10–3T2–5.9299T+5098.1; kf= –7.0x10–6T2+ 

5.8x10–3T–0.4765; ρf= –2.7x10–3T2+1.3104T+848.07; and ln(µf) = –3.27017–0.0131T. 

For ammonia between 273.15 K<T<370 K; Cpf=0.083T2–40.489T+9468; kf=1.159–

2.30x10–3T; ρf=579.81+1.6858T–0.0054T2; and ln (µf) = –5.33914–0.0115T. For MIL–

7808 between 303 K<T<470 K; Cpf=903.8+3.332T; kf=0.18–1x10–4T; ρf=1181–0.708T; 

and ln (µf) =3.2436–0.0229T. For FC–77 between 273 K<T<380 K; Cpf=589.2+1.554T; 

kf=0.0869–8x10–5T; ρf=2,507.2–2.45T; and ln (µf) = –2.38271–0.0145T. In these 

correlations, the absolute temperature T is in K. 

3.5.4 Chemical Mechanical Polishing Steady State and Transient Process 

For a problem under study, the governing equations and the boundary conditions 

were solved using the finite element method (FEM). The FI–GEN module of FIDAP 

(Fluent, 2005) and the software GAMBIT (Fluent, 2006) were used for geometric 

modeling and mesh generation. In FEM, the computational domain is discretized into 
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elements. Four node quadrilateral elements were used. In each element, velocity 

components, pressure, and temperature fields, if any, were approximated by using the 

Galerkin FEM procedure [140] that leads to a set of algebraic equations that defines the 

discretized continuum.  

For 3–D models, the number of elements and nodal points are usually so large 

that the use of a fully coupled algorithm may require computing resources that exceed 

those available. To avoid that type of problem, the solution of the resulting non–linear 

equations was carried out using the segregated method.  

The segregated solution algorithm avoids the direct formation of a global system 

matrix. Instead, in each iteration, only one unknown is solved for, while the others keep 

their previous values. The next iteration is used to solve for the next unknown. Due to its 

sequential and uncoupled nature, the segregated approach requires less disk storage but 

more iterations than the fully coupled approach. The formulation of the segregated 

algorithm is quite involved and can be found in FIDAP Documentation (Fluent, 2005). 

The present CMP model solution was considered converged when the relative 

change in field values from a particular iteration to the next, and the sums of the residuals 

for each variable became less than 10–4. The technical computing program Matlab (The 

MathWorks, 2007) was used to compute and generate 3–D visualizations contour plots 

for the numerical solutions from FIDAP imported into MATLAB through the neutral 

files (*.FPNEUT).  

The polishing pad and heated wafer of present investigation had a radius of 7.65 

cm and 1.9 cm respectively. The source of heat flux (qsl) in the model was from the non–

uniform shear friction and it was varied over a range of 3.75 to 23.12 (kW/m2). The 
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incoming slurry temperature (Tsl) was set to 297 K for alumina (Al2O3). The slurry film 

thickness was varied from 40 to 200µm. The pad and carrier spinning rate (Ωp,c) was 

varied from 8.38 to 25.13 rad/s and 1.57 to 7.85 rad/s respectively. The flow rate was 

varied from 0.5–1.42 cc/s. The possibility of getting into a turbulent flow due to disk 

rotation was checked using the laminar–turbulent transition criterion of Popiel and 

Boguslawski [36] and Vanyo [142]. All runs used in the study checked out to be laminar.  

3.6 Mesh Independence and Time Step Study 

3.6.1 Free Liquid Jet Impingement Model 

The examination of the spatial convergence of a simulation is a straight–forward 

method that determines the ordered of the discretization error in a CFD simulation. The 

method involves performing the simulation on two or more successively finer grids. As 

part of this study, a quantitative difference of grid independence was calculated by the 

accuracy of code using the asymptotic range of convergence of Roache’s methodology 

[143]. The Grid Convergence Index (GCI) was used to measure the numerical results 

percentage of accuracy in terms of the asymptotic numerical value of the exact solution. 

The GCI indicates an error band and how far the solution is from the asymptotic value. It 

indicates how much the solution would change with a further refinement of the grid. A 

small value of GCI indicates that the computation is within the asymptotic range. The 

GCI can be computed using two levels of grid; however, three levels are recommended to 

determine the order of convergence and to check if the solutions are within the 

asymptotic range of convergence. The GCI on the grid is defined as: 

100
)1r(

1T

1T2T
F

GCI
p

s
⋅

−

−

=                        (3.6.1) 
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where FS is a factor of safety. The refinement may be spatial or in time. The safety factor 

of FS=3.0 is recommended for two grids. On the other hand, a safety factor of FS=1.25 is 

recommend for three or more grids. It is important that each grid level yield to a solution 

that is in the asymptotic range of convergence of the mesh. This can be checked by 

observing two of the GCI values as computed over three grids, 

GCI23=rp GCI12                         (3.6.2) 

As the grid spacing reduces, the temperature values at the interface approach to 

the asymptotic zero grid spacing value. We can determine the local order of convergence 

from these results, that direct evaluation of p can be obtained from a three grid solution 

using the grid refinement ratio r, equal to the number of elements of the fine grid (Mn+1) 

divided by the number of elements of the coarse grid (Mn) . 


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
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
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
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


−
−

=

1N

3N
ln

1T2T

2T3T
ln

p                          (3.6.3) 

The local order of accuracy is the order of the stencil representing the 

discretization of the equation at one location (r/rd) in the grid. The global order of 

accuracy considers the propagation and accumulation of errors outside the stencil. This 

propagation causes the global order of accuracy to be, in general, one degree less than the 

local order of accuracy. To fulfill the analysis of the Grid Convergence Index (GCI), it 

was necessary to use Richardson’s extrapolation method for higher–order. The 

Richardson’s extrapolation method was used to estimate the continuum value at zero grid 

spacing from a series of lower–order discrete values. The continuum value at zero grid 

spacing and the percentage error can be generalized for a p–th order methods and r–value 

of grid ratio (which does not have to be an integer) defined by the following expressions:  
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Additionally, to determine the number of elements for accurate numerical 

solution, computation was performed for several grids or combinations of number of 

elements in the horizontal and vertical directions covering the solid and fluid regions, as 

shown in figure 3.11.  
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Figure 3.11 Solid–fluid interface temperature for different number of elements in r and z 
directions (Re=1,500, b=0, dn=1.2 mm, Ek=2.65x10–4, β=2.67). 

 

The numerical solution becomes grid independent when the number of divisions 

equal to 26x85 in the axial (z) and radial (r) directions respectively is used. Numerical 

results for a 26x85 grid gave almost identical results compared to those using 22x76 and 
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32x152 grids. The average difference was 0.69%. Therefore, further computations were 

carried out using a 26x85 grid.  

Subsequently, the GCI method was used to confirm the accuracy of the chosen 

mesh. The GCI’s values, the percent error, and Th=0 at r/rd=0.75 are shown in Table 3.2. 

Thus, the above set of equations (3.6.1 to 3.6.4) was solved to determine the local 

accuracy of convergence or GCI’s values for the following three grids. The last column 

of Table 3.2 shows that a grid of 26x85 is the most accurate with a percent error of 

3.36x10–3 from its asymptotic numerical exact solution. The purpose of the GCI method 

is to point out an error band and how far the local solution of the mesh is from its 

asymptotic value. 

Table 3.2 Grid convergence study of figure 3.11. 

Run # MSH GCI  
(%) 

Tint 

at r/rd= 0.75 
(K) 

Th=0  

at  r/rd= 0.75 

(K) 

Eq.3.6.5 
(%error) 

1 22x76 GCI12 = 0.497 340.85069 339.496 0.399 

2 26x85 GCI23 = 0.046 339.50792  3.36x10–3 

3 32x152 GCI31 = 0.453 339.37213  0.037 

 

Computations were also performed to calculate a suitable fixed time step to 

determine its sensitivity on the transient solution. Figure 3.12 plots the variation of 

maximum dimensionless solid–fluid interface temperature for different time increments 

as a function of Fourier number (Fo) as a dimensionless number to represent the time. It 

may be noted that the solution is not susceptible to the size of the time step or increment 

when an increment of 0.075 seconds or less is chosen. A time increment of 0.05 seconds 

was selected to ensure a smooth variation. Notice how the maximum dimensionless 

temperature increases rapidly all the way to the steady state condition. 
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Figure 3.12 Time step independence study for maximum dimensionless interface 
temperature variation at different time steps (Re=550, silicon disk, water, 
b/dn=0.5, Ek=2.65x10–4, qw=125 kW/m2, β=2.67). 

 

3.6.2 Confined Liquid Jet Impingement Model 

3.6.2.1 Stationary Confined Wall with Spinning Target  

The solid–fluid dimensionless interface temperatures for different number of grids 

are plotted in figure 3.13. Several grids were used to determine the number of elements 

needed for accurate numerical solution. It was observed that the numerical solution 

becomes grid independent when the grids reach a number of divisions equal to 35x79 in 

the axial (z) and radial (r) directions respectively. Numerical results for a 35x79 grid gave 

almost identical results compared to a 64x76 grid for an impingement height (Hn) equal 

to 0.32 cm. Therefore, the chosen grid was 35x79 that carried an average error margin of 

0.243% compared to 64x76 grids. 
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Figure 3.13  Local dimensionless interface temperature for different number of elements 
in r and z directions at constant flow rate (Re=1,500, Q=7.08x10–2 m3/s, 
b=0, Ek=2.65x10–4, qw =250 kW/m2, Hn/dn= 5.33, Ω=125 RPM, Hn=0.32 
cm). 

 

The GCI’s values, the percent error, and Th=0 at r/rn=8 are shown in Table 3.3. 

Thus, the above set of equations (3.6.1–3.6.5) was solved to determine the local accuracy 

of convergence or GCI for each of the following mesh domains.  

Table 3.3 Grid convergence study of figure 3.13. 

Run # MSH GCI  
(%) 

Tint 

at r/rn= 8 
(K) 

Th=0  

at  r/rn= 8 

(K) 

Eq.3.6.5 
(%error) 

1 22x79 GCI12 = 3.2x10–3 323.16375 323.143 6.45x10–3 

2 35x79 GCI23 = 8.1x10–3 323.15114  2.55x10–3 

3 64x76 GCI31 = 0.011 323.19566  0.016 

 

The last column of Table 3.3 shows that a grid of 35x79 is the most accurate with 

a percent error of 2.55x10–3 from its asymptotic numerical exact solution. The purpose of 
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the GCI method is to point out an error band and how far the local solution of each 

particular grid is from its asymptotic value. 

3.6.2.2 Spinning Confined Wall with Stationary Target 

For the spinning confined wall with stationary target, several grids or 

combinations of a number of elements were used to determine the accuracy of the 

numerical solution. Dimensionless solid–fluid or interface temperatures at the heated 

plate for several grids are plotted in figure 3.14.  
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Figure 3.14 Dimensionless interface temperature distributions for different number of 
elements in r and z directions (Re=1,000, b=0.3 mm, dn=0.12 mm, 
Ek=1.06x10–3, β=2.0). 

 

The numerical solution becomes grid independent when the number of divisions 

equal to 40x70 in the axial (z) and radial (r) directions respectively is used. Numerical 

results for a 40x70 grid gave almost identical results compared to 38x82 and 46x82 grids 

for an impingement height (Hn) equal to 0.24 cm. The average difference was equal to 
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0.22%. Therefore, further computations were carried out using 40x70 elements. The size 

of the elements varies with denser distribution at the solid–fluid interface and at the 

nozzle axis. Scaling ratios of 1.5 and 1.62 were used in radial and axial directions 

respectively.  

Table 3.4 Grid convergence study of figure 3.14. 

Run # MSH 
GCI  
(%) 

Tint 

at r/rd= 0.4 
(K) 

Th=0  

at  r/rd= 0.4 

(K) 

Eq.3.6.5 
(%error) 

1 38x82 GCI12 = 2.4x10–3 331.62446 331.631 1.97x10–3 

2 46x82 GCI23 = 2.5x10–3 331.80240  0.052 

3 40x70 GCI31 = 9.4x10–5 331.63125  7.5x10–5 

 

A quantitative difference in local grid convergence was calculated using equation 

(3.6.1 to 3.6.4) for the temperature at the solid–fluid interface Tint at a given r/rd–location 

of the target disk for each grid. The GCI’s values and the exact solution for a grid size of 

zero spacing at r/rd=0.4, are shown in Table 3.4. In addition, the last column of Table 3.4 

shows the calculated percent error obtained by equation 3.6.5 for a grid of 40x70. These 

results show that the chosen grid of 40x70 is the most accurate. The purpose of the GCI 

method is to point out an error band and how far the local solution of the mesh is from its 

asymptotic value. It can be found that the numerical solution becomes grid independent 

when the number of divisions equal to 28x63 in the axial (z) and radial (r) directions, as 

shown in figure 3.15. Comparing the numerical results for the 32x72 and 45x100 grids 

with a 28x63 grid shows an average difference of 0.72%. Therefore, further computations 

were carried out using a 28x63 grid. 
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3.6.3 Partially–confined Liquid Jet Impingement Model  

3.6.3.1 Stationary Confined Wall with Spinning Target 

The number of elements required for accurate numerical solution was determined 

from a systematic grid–independence study. 
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Figure 3.15 Dimensionless interface temperature distributions for different number of 
elements in r and z directions (Re=750, rp/rd=0.667, b/dn=0.5, Ek=4.25x10-4, 
β=0.5). 

 

Table 3.5 Grid convergence study of figure 3.15. 

Run # MSH GCI  
(%) 

Tint 

at r/rd= 0.5 
(K) 

Th=0  

at  r/rd= 0.5 

(K) 

Eq.3.6.5 
(%error) 

1 28x63 GCI12 = 6.7x10–5 353.13354 353.133 5.4x10–5 

2 32x72 GCI23 = 3.6x10–3 353.12285  3.0x10–3 

3 45x100 GCI31 = 3.7x10–3 353.71234  0.164 

 

The GCI’s values, the percent error, and Th=0 at r/rd=0.5 are shown in Table 3.5. 

Thus, the above set of equations (3.6.1–3.6.5) was solved to determine the local accuracy 
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of the following grids 32x72 and 45x100 in comparison with a 28x63 grid. In addition, 

the last column of Table 3.5 shows the calculated percent error obtained by equation 

3.6.5 for a grid of 28x63 is the most accurate in comparison with its asymptotic 

numerical exact solution. The purpose of the GCI method is to point out an error band 

and how far the local solution of the mesh is from its asymptotic value.  
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Figure 3.16 Maximum dimensionless interface temperature variation for different time 
steps with water as the cooling fluid (Re=225, Ek=2.13x10–4, β=0.5, silicon 
disk, b/dn=0.5, and rp/rd=0.667). 

 

To determine the sensitivity of the transient solution further computations were 

performed to calculate a suitable fixed time step, as shown in figure 3.16. These transient 

computations showed that the variation of the temperature is not sensitive to time step 

size when an increment of 0.075 seconds or less is chosen. For this study, the time 

increment of 0.05 seconds was selected to ensure a smooth variation. 
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3.6.3.2 Co–Rotating Target and Confined Wall 

For the co–rotating target and confined wall, several grids or combinations of 

number of elements were used to determine the accuracy of the numerical solution, as 

shown in figure 3.17. The numerical solution becomes grid independent when the 

numbers of divisions used were equal to 34x63 in the axial (z) and radial (r) directions 

respectively. Comparing the numerical results for the 34x59 and 36x64 grids with a 

34x63 grid showed an average difference of 0.159%. 
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Figure 3.17 Dimensionless interface temperature distributions for different number of 
elements in r and z directions (Re=750, b/dn=0.5, Ek1,2=4.25x10–4, 
rp/rd=0.667, β=0.5). 

 

The GCI’s values, the percent error, and Th=0 at r/rd=0.4 are shown in Table 3.6. 

The mesh convergence for different grids was calculated using the following equations 

(3.6.1 to 3.6.5). In addition, the last column of Table 3.6 shows that a grid of 34x63 is the 

most accurate with a percent error of 5.70x10–3 from its asymptotic numerical exact 
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solution. The purpose of the GCI method is to point out an error band and how far the 

local solution of each particular grid is from its asymptotic value. 

Table 3.6 Grid convergence study of figure 3.17. 

Run # MSH GCI  
(%) 

Tint 

at r/rd= 0.4 
(K) 

Th=0  

at  r/rd= 0.4 

(K) 

Eq.3.6.5 
(%error) 

1 34x59 GCI12 = 8.8x10–3 333.06414 333.043 6.3x10–3 

2 34x63 GCI23 = 8.8x10–4 333.024125  5.7x10–3 

3 36x64 GCI31 = 7.9x10–3 333.019651  7.0x10–3 

 

3.6.4 Chemical Mechanical Polishing Model 

The distribution of an element size in a computational domain is determined from 

a mesh independence study by systematically changing the element density in all space 

directions to obtain a mesh of acceptable accuracy. Several grids or combinations of 

number of elements were used to determine the flow field and wafer interface 

temperature distribution, as shown in figure 3.18. The numerical solution becomes grid 

independent for the number of elements equal to 1,344. Numerical results for 1,344 

elements gave almost identical results compared to those using 780 and 1,600 elements. 

The average margin of error was 0.0244%. A set of temperature distributions across the 

slurry region just below the wafer surface along the film thickness was used to 

characterize the accuracy of the mesh model. Therefore, all further computations were 

carried out using a grid of 1,344 elements. 
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Figure 3.18 Temperature distribution across the slurry region beneath the substrate 
surface for various number of elements (Qsl=65 cc/min, Ωw=15 RPM, 
Ωp=150 RPM, COF=0.4, δsl=50 µm, P=24.35 kPa, rw=1.9 cm, qsl=7.24 to 
10.12 kW/m2). 

 

 

Figure 3.19  Grid topology of control volume that includes the wafer, alumina slurry, 
and polishing pad. 
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The mesh grid topology of a slurry film thickness of 50 µm is plotted at figure 

3.19. A uniform and denser distribution of elements was used at the center of the control 

volume region to capture the thermal effect of the constrict alumina slurry, as shown in 

figure 3.19.  
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Chapter 4 Free Liquid Jet Impingement Model Results 

 

 

4.1 Steady State Cooling of Spinning Target  

A typical velocity vector distribution is shown in figure 4.1. It can be seen that the 

velocity remains almost uniform at the potential core region of the jet. The velocity 

decreases and the fluid jet diameter increases as the fluid gets closer to the plate during 

the impingement process.  

 

Figure 4.1  Velocity vector distribution for jet impingement on a silicon wafer with 
water as the cooling fluid (Re=900, Ek=2.65x10–4, β=2.67, b/dn=0.5). 

 

The direction of motion of the fluid particles shifts by as much as 90o. After this, 

the fluid accelerates creating a region of minimum sheet thickness. This is the start of the 
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boundary layer zone. It can be noticed that as the boundary layer thickness increases with 

radius, the frictional resistance from the wall is eventually transmitted to the entire film 

thickness. This is called fully viscous zone. The three different regions observed in the 

present investigation are in agreement with the experiments of Liu et al. [17]. 
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Figure 4.2 Free surface height distribution for different Reynolds numbers with water 
as the cooling f1uid (Ek=2.65x10–4, β=2.67, b/dn=0.5). 

 

Figure 4.2 presents the free surface height distribution for different Reynolds 

numbers when the jet strikes the center of the disk while it is spinning at a rate of 125 

RPM. It can be seen that the fluid spreads out radially as a wavy thin film. As the 

Reynolds number increases the film diminishes in thickness under the same constant 

spinning rate due to a larger impingement velocity that translates to a higher fluid 

velocity in the film. For the conditions considered in the present investigation, the flow 

was supercritical and a hydraulic jump did not occur within the computation domain. 

These observations are in agreement with the experimental work of Metzger et al. [37]. 
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Figure 4.3  Dimensionless interface temperature and local Nusselt number distributions 
for a silicon wafer with water as the cooling fluid for different Reynolds 
numbers (Ek=2.65x10–4, β=2.67, b/dn=0.5). 

 

Figure 4.3 shows the dimensionless interface temperature and local Nusselt 

number distributions as a function of dimensionless radial distance (r/dn) along the solid–

fluid interface at different Reynolds numbers for a rotational rate of 125 RPM. The 

curves in figure 4.3 reveal that the dimensionless interface temperature decreases with jet 

velocity (or Reynolds number). The dimensionless interface temperature has the lowest 

value at the stagnation point (underneath the center of the axial opening) and increases 

radially reaching the highest value at the end of the disk. The local Nusselt number 

distributions, as shown in figure 4.3 increases rapidly over a small distance (core region) 

measured from the stagnation point, reaching a maximum around r/dn=0.40, and then 

decreases along the radial distance as the boundary layer develops further downstream. 

The location of the maximum Nusselt number can be associated with the transition of the 
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flow from the vertical impingement to horizontal displacement where the boundary layer 

starts to develop. Figure 4.3 confirms to us how an increasing Reynolds number 

contributes to a more effective cooling by the enhancement of the convective heat 

transfer coefficient. 
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Figure 4.4 Average Nusselt number and heat transfer coefficient variations with 
Reynolds number for a silicon wafer with water as the cooling fluid 
(β=2.67, b/dn=0.5). 

 

Figure 4.4 plots the average Nusselt number and average heat transfer coefficient 

as a function of Reynolds numbers for low, intermediate, and high Ekman numbers or 

rotational rates. It may be noted that average Nusselt number increases with Reynolds 

number. As the flow rate (or Reynolds number) increases, the magnitude of fluid velocity 

near the solid–fluid interface that controls the convective heat transfer rate increases. 

Furthermore, at a particular Reynolds number the graphical values are shifted gradually 

upward due to an increment of the spinning rate. This behavior confirms the positive 
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influence of the rotational rate on the average Nusselt number and average heat transfer 

coefficient. 
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Figure 4.5 Dimensionless interface temperature and local Nusselt number distributions 
for a silicon wafer with water as the cooling fluid at different Ekman 
numbers (Re=1,500, β=2.67, b/dn=0.5). 

 

The rotational rate effects of the solid wafer on the dimensionless interface 

temperature and local Nusselt number are illustrated in figure 4.5. It can be noted that 

Nusselt number distribution does not change drastically with the variation of rotational 

rate or Ekman number in figure 4.5. Differences are seen only at large radial location of 

the disk where the magnitude of the centrifugal force encountered by the liquid film is 

higher. This clearly indicates that at Re=1,500 the flow field is dominated by the 

momentum of the impinging jet. However, the dimensionless interface temperature 

changes along the entire disk radius with the variation of Ekman number. It can be noted 
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that dimensionless interface temperature decreases with the increment of the rotational 

rate due to the enhancement of local fluid velocity adjacent to the wafer. 

The average Nusselt number and heat transfer coefficient variations as a function 

of Ekman number at high, intermediate, and low Reynolds numbers are shown in figure 

4.6. As the Ekman number decreases from 2.65x10–4 to 2.21x10–5 the average Nusselt 

number and heat transfer coefficient increases by an average 27.15% under high 

Reynolds number (Re=1,500) and 13.19% under low Reynolds number (Re=750) with an 

overall increment of 20.17% in general. 
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Figure 4.6 Average Nusselt number and heat transfer coefficient variations with 
Ekman number for a silicon wafer with water as the cooling fluid (β=2.67, 
b/dn=0.5). 

 

The effects of disk thickness variation on the solid–fluid dimensionless interface 

temperature and local Nusselt number are shown in figure 4.7.  
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Figure 4.7 Dimensionless interface temperature and local Nusselt number distributions 
for different wafer thicknesses with water as the cooling fluid (Re=1,000, 
Ek=2.65x10–4, β=2.67). 

 

In these plots, silicon has been used as the disk material and water as the cooling fluid. 

The dimensionless solid–fluid interface temperature distribution in figure 4.7 increases 

from the impingement region all the way to the end of the disk. It may be also noted that 

the curves intersect with each other at a dimensionless radial distance of r/dn=3.75. 

Thicker disks generate more uniform dimensionless interface temperature due to a larger 

radial conduction within the disk. In addition, the dimensionless solid–fluid interface 

temperature and local Nusselt number distributions did not change much beyond a disk 

thickness of 0.60 mm, or dimensionless thickness b/dn=0.50 indicating that the overall 

heat transport reached a convection–conduction equilibrium condition at the solid–fluid 

interface. Local Nusselt number distributions do not change significantly with the 
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variation of disk thickness. Higher local Nusselt number values are observed at a 

dimensionless radial distance (r/dn) of less than 0.5 for all curves. These steep Nusselt 

numbers values were generated by a higher rate of heat removal at the impingement zone. 
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Figure 4.8 Local Nusselt number distribution for different nozzle diameters for a 
silicon wafer with water as the cooling fluid (Re=1,000, Ek=6.62x10–5, 
β=2.67, b/dn=0.5). 

 

Figures 4.8 shows the local Nusselt number distributions as a function of 

dimensionless radial distance (r/dn) along the solid–fluid interface for different disk 

radius to nozzle diameter ratio (Γ) from 2.11 to 6.33 under a Reynolds number of 1,000 

and rotational rate of 500 RPM. Nusselt number increases rapidly over a small distance at 

the core region measured from the stagnation point, reaches a maximum around 

r/dn=0.40, and then decreases along the radial distance as the boundary layer develops 

further downstream. The location of the maximum Nusselt number can be associated 

with the transition of the flow from the vertical impingement to horizontal displacement 
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where the boundary layer starts to develop. It can be noticed that local Nusselt number is 

greater for higher Γ in the impingement zone whereas it is somewhat lower at higher Γ in 

the boundary layer zone. For a constant Reynolds number and constant disk radius, a 

larger value of Γ is realized at higher jet velocity. Therefore it provides a higher rate of 

convective heat transfer in the stagnation region where the jet directly strikes the disk. 

Since higher Γ is also associated with lower jet diameter. The fluid has to travel over a 

longer path in the boundary layer region where it losses its momentum resulting in lower 

convective heat transfer rate by the time it exists the disk surface. 
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Figure 4.9 Dimensionless interface temperature and local Nusselt number distributions 
for a silicon disk with water as the cooling fluid for different nozzle to 
target spacing (Re=750, Ek=2.65x10–4, b/dn=0.5). 

 

The solid–fluid dimensionless interface temperature and local Nusselt number 

distributions for seven different nozzle to target spacing for water as the coolant at a 

spinning rate of 125 RPM and Reynolds number of 750 are shown in figure 4.9. It may 
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be noticed that the impingement height quite significantly affects the dimensionless 

interface temperature as well as the Nusselt number only at the smaller radii that contain 

the stagnation region and the early part of the boundary layer region. At larger radii the 

values are identical for all impingement heights. It is quite expected since the 

impingement height essentially controls the change in velocity the fluid particles 

encounter during the free fall from nozzle exit to target disk surface and therefore affects 

areas controlled by direct impingement. This observation is somewhat similar to a 

previous study by Owosina [143] for free jet impingement over a stationary disk. 
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Figure 4.10 Local Nusselt number and dimensionless interface temperature variations 
for different cooling fluids for silicon as the disk material (Re=750, Ω=125 
RPM, β=2.67, b/dn=0.5). 

 

Figures 4.10 compares the solid–fluid interface temperature and local Nusselt 

number distribution results of our primary working fluid (water) with three other coolants 

that have been considered in previous thermal management studies, namely ammonia 
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(NH3), flouroinert (FC–77) and oil (MIL–7808). It may be noticed that water presents the 

lowest interface temperature and second lowest Nusselt number distribution in 

comparison with FC–77, NH3 and MIL–7808. The highest Nusselt number is obtained 

when FC–77 is used as the working fluid. This is primarily because of its lower thermal 

conductivity compared to the other fluids. There results are for a constant Reynolds 

number of 750 while the disk is spinning at a rate of 125 RPM.  
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Figure 4.11 Local Nusselt number and dimensionless interface temperature variations 
for different solid materials with water as the cooling fluid (Re=1,500, 
Ek=2.21x10–5, β=2.67, b/dn=0.5). 

 

Figure 4.11 shows the dimensionless interface temperature and local Nusselt 

number distribution plots as a function of a dimensionless radial distance (r/dn) for 

different solid materials with water as the working fluid. The studied materials were 

silicon, silver, aluminum, copper, and Constantan, having different thermo–physical 

properties. Constantan shows the lowest dimensionless temperature at the impingement 
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zone and the highest at the outlet in comparison with other solid materials. Copper and 

silver show a more uniform distribution and higher temperature values at the 

impingement zone due to their higher thermal conductivity. The dimensionless 

temperature and local Nusselt number distributions of these two materials are almost 

identical due to their similar thermal conductivity values. The cross–over of curves for all 

five materials occurred due to a constant fluid flow and heat flux rate that reaches a 

thermal energy balance. Solid materials with lower thermal conductivity show higher 

maximum local Nusselt number. 

Figure 4.12 presents the maximum temperature and maximum to minimum 

temperature difference at the interface for all five disk materials studied under different 

disk thicknesses with water as the working fluid. The temperature control is crucial in the 

design of electronic packages. The maximum temperature at the interface as well as the 

maximum solid disk temperature decreases as the disk thickness increases. It maybe 

noticed that effects are fairly large at smaller thicknesses indicating that it is a crucial 

parameter in maintaining the temperature uniformity. On the other hand increasing the 

disk thickness beyond certain limit, for each solid material, may not be useful. The choice 

of disk material is also crucial in determining the magnitudes of these temperatures. A 

material with larger thermal conductivity will facilitate a faster rate of heat transfer, and 

therefore will result in a lower maximum temperature at the solid–fluid interface and 

inside the solid. The temperature difference at the interface is an indication of the level of 

temperature non–uniformity at the impingement surface, while the maximum temperature 

inside the solid indicates the thermal resistance generated by the disk material. When the 

disk thickness is negligible, the interface temperature is controlled by the heat flux 
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condition at the heater. Adequate thickness provided a more uniform interface 

temperature due to radial heat spreading within the solid. The maximum to minimum 

temperature difference is strongly affected by thermal conductivity of the disk material 

decreasing it as the disk thermal conductivity increases. These findings are in agreement 

with Rahman et al. [20] who studied free liquid jet impingement over a stationary disk. 
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Figure 4.12 Maximum to minimum temperature difference and maximum solid–fluid 
interface temperature (Re=1,500, dn=0.12 cm, β=2.67, Ek=2.21x10–5). 
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Figure 4.13 Average Nusselt number and heat transfer coefficient variations with disk 
thickness (Re=1,500, Ek=2.21x10–5). 

 

The effects of disk thickness on the average heat transfer coefficient and Nusselt 

number for all five materials can be observed in figure 4.13. It shows that the average 

heat transfer coefficient and average Nusselt number attain constant values at b/dn greater 

than 0.50 for all the materials. Constantan has the highest average heat transfer 

coefficient value among these materials. This behavior is in agreement with the local 

Nusselt number distribution shown in figure 4.11. The radial conduction becomes 

stronger as the disk thickness increases generating a better heat distribution at the 

interface. However, the increment of solid thickness beyond certain limit creates more 

thermal resistance, which ends up crippling the heat transfer process. 

Two of the papers used for the validation of this numerical study were the 

experimental work carried out by Stevens and Webb [16] and analytical studies by 
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Watson [4]. Computations were carried out for a water jet that impinges perpendicularly 

at the center of a stationary solid disk at various nozzle to target spacing ratios. Figure 

4.14 compares the calculated local free surface height distributions with the profiles 

reported by the experimental studies of Stevens and Webb [3] and the analytical results of 

Watson [4] at different nozzle diameters (dn=2.1 and 4.6 mm. The numerical values 

compare reasonably well with the measured free surface heights and Watson’s analytical 

predictions.  
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Figure 4.14 Comparison of height of the free surface with analytical predictions of 
Watson [4] and experimental data of Stevens and Webb [16] (Re=1,500, 
Ek=∞, b/dn=0.5). 

 

In addition, the present numerical simulation results at steady state were 

compared with the steady state test data acquired by Leland and Pais [19] for a disk with 

no rotation. The average heat transfer coefficient from the present numerical simulation 

using MIL–7808 as the working fluid for different combinations of Reynolds number and 
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input heat flux were compared with the experimental measurements of Leland and Pais 

[19]. The percent difference of present average heat transfer coefficient results was 

defined in the following form: % diff = ((hnum – hexp)/hexp)×100. The percent difference 

was in the range of 0.41%–5.53%. Considering the uncertainty of experimental 

measurements and round off and discretization errors in numerical computation, the 

overall comparison between test data and numerical results can be considered quite 

satisfactory.  

The third paper used for comparison of this numerical study was the analytical 

work carried out by Liu and Lienhard [10]. They obtained an integral solution for the heat 

transfer coefficient in the boundary layer and similarity regions for Prandtl number 

greater than the unity for a stationary disk.  

25

30

35

40

45

50

55

60

65

0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

Radial Displacement (cm)

L
o
ca
l 
N
u
ss
e
lt
 N
u
m
b
e
r
,N
u

Liu and Lienhard [2]

Ek=34.68, Ω=1x10-4 rpm

Ek=2.65x10-4, Ω=125 rpm

Ek=7.79x10-5, Ω=425rpm

Liu and Lienhard [10]

Ek = ∞

Ek = 2.65x10-4

Ek = 7.80x10-5

 

Figure 4.15 Local Nusselt number comparison with Liu and Lienhard [10] under 
different Ekman numbers (Re=1,500, β=2.67, b/dn=0.5). 
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A graphical representation of the Nusselt number correlation from Liu and 

Lienhard [10] and present numerical results at different spinning rates with water as the 

working fluid are shown in figure 4.15. The percent difference of present local Nusselt 

number was defined in the form: % diff = ((Nunum – Nuanaly)/Nuanaly) ×100. The results 

shown for a stationary disk compare within an average difference of 3.25% with Liu and 

Lienhard correlation. The local Nusselt number under spinning rates at 125 and 425 RPM 

correlates with an average margin of 3.49% and 21.83% respectively. In general, the 

overall average difference of local Nusselt numbers was equal to 9.52%. A better 

comparison for stationary disk and higher deviation with higher spinning rate is expected, 

since the correlation in [10] was developed for a stationary disk. 
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Figure 4.16 Comparison of predicted average Nusselt numbers of equation 4.1 with 
present numerical data.  
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One of the goals of this dissertation was to develop a predictive trend of the 

average heat transfer coefficient. A graphical comparison of the correlating equation and 

the numerical average Nusselt numbers obtained from this computational analysis is 

shown in figure 4.16. A correlation for the average Nusselt number was developed as a 

function of thermal conductivity ratio, nozzle–to–plate spacing, Prandtl number, Ekman 

number, and Reynolds number to accommodate most of the transport characteristics of a 

free liquid jet impingement cooling process. A correlation that best fitted the numerical 

data can be placed in the following form: 

Nuav=Re0.385 ⋅ Ek–0.091 ⋅ Pr0.4 ⋅β0.0114 ⋅ ε–0.25                    (4.1) 

The ranges of the dimensionless variables used are the following: 445 ≤Re≤ 

1,800, 2.65x10–4 ≤Ek≤ 2.21x10–5, Pr=5.49, 0.55 ≤β≤ 5.0, 227.6 ≤ε≤ 697.5. The Prandtl 

number exponent was taken from Martin’s equation [144] for single round nozzle 

impinging jet. The Average Nusselt number data were then correlated in order to 

determine the other exponents of equation 4.1 using the least squares curve fitting 

method. The percent difference of the predicted average Nusselt number was defined as: 

% diff = ((Nuavpred – Nuavnum)/Nuavnum) ×100. The differences between numerical and 

predicted average Nusselt number values are in the range of +19.63% to –17.83%. It 

should be noted from figure 4.16 that a large number of data points are well correlated 

with equation 4.1 and only a few are near the limits.  

4.2 Transient Cooling of Spinning Target  

The following section presents the transient conjugate heat transfer of a free liquid 

jet impinging on a rotating solid disk of finite thickness and radius. Figure 4.17 illustrates 

the dimensionless interface temperature for different time instants. It can be observed that 
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at the early part of the transient heat transfer process, the solid–fluid interface maintains a 

more uniform temperature. The difference of dimensionless maximum and minimum 

temperature at the solid–fluid interface increases from 0.012 at Fo=0.005 to 0.128 when 

the steady state condition reached at Fo=0.339. This pattern is due to the thermal storage 

in the fluid that is necessary to develop the thermal boundary layer since an isothermal 

condition was present at the beginning of the transient heat transfer process. As time goes 

on, the thickness of the thermal boundary layer increases and therefore the temperature 

rises. The interface temperature responds to the boundary layer thickness that increases 

downstream. Therefore, the temperature becomes minimum at the impinging point and 

maximum at the outer edge of the disk.  
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Figure 4.17 Dimensionless interface temperature distributions for different Fourier 
numbers (Re=500, Ek=2.65x10–4, β=2.67, silicon disk, water, b/dn=0.5, 
qw=125 kW/m2). 
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Figure 4.18 shows the variation of local Nusselt number along the solid–fluid 

interface at different time instants. The local Nusselt number decreases with time until it 

reaches the steady state equilibrium distribution. The local Nusselt number is controlled 

by local temperature and local heat flux at the solid–fluid interface. Both of these 

quantities increase with time. The local Nusselt number shows a higher value at early 

stages of the transient process due to smaller temperature difference between the liquid 

jet and disk solid–fluid interface. This essentially means that all heat reaching the solid–

fluid interface via conduction through the solid is more efficiently convected out as the 

local fluid temperature is low everywhere at the interface. The local Nusselt number, as 

shown in figure 4.18 increases rapidly over a small distance (core region) measured from 

the stagnation point, reaching a maximum around r/dn=0.04, and then decreases along the 

radial distance as the boundary layer develops further downstream.  
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Figure 4.18 Local Nusselt number distributions for different Fourier numbers (Re=500, 
Ek=2.65x10–4, β=2.67, silicon disk, water, b/dn=0.5, qw=125 kW/m2). 
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The location of the maximum Nusselt number can be associated with the 

transition of the flow from the vertical impingement to horizontal displacement where the 

boundary layer starts to develop. The variation of dimensionless maximum temperature at 

the interface, maximum temperature inside the solid, and maximum–to–minimum 

temperature difference at the interface for different Fourier numbers with water as the 

cooling fluid at different Reynolds numbers are shown in figure 4.19. The control of 

maximum temperature is important in many critical thermal management applications 

including electronic packaging. As expected, the temperature increases everywhere with 

time starting from the initial isothermal condition. A rapid increment is seen at the earlier 

part of the transient, and it levels off as the thermal storage capacity of the solid 

diminishes and become zero at the steady state condition.  
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Figure 4.19 Dimensionless maximum temperature variations for different Reynolds 
numbers (Ek=2.65x10–4, β=2.67, silicon disk, water, b/dn=0.5, qw=125 
kW/m2). 
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It maybe noted that the time required to reach the steady state condition is lower 

at a higher Reynolds number because the higher velocity of the fluid helps to enhance the 

convective heat transfer process. The maximum–to–minimum temperature difference at 

the interface increases with time as more heat flows throughout the solid disk and 

transmitted to the fluid. 
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Figure 4.20 Average Nusselt number variations for different Reynolds numbers 
(Ek=2.65x10–4, β=2.67, silicon disk, water, b/dn=0.5, qw=125 kW/m2). 

 

Figure 4.20 provides the integrated average Nusselt number variations for various 

Reynolds number with water as the cooling fluid at different time instants. As expected, 

the average Nusselt number is large at the early part of the transient and monotonically 

decreases with time ultimately reaching the value for the steady state condition. A higher 

Reynolds number increases the magnitude of fluid velocity near the solid–fluid interface 

that controls the convective heat transfer and therefore increases the average Nusselt 
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number. These observations are in–line with the previous studies by Rahman and Faghri 

[96, 98] and Saniei et al. [39].  
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Figure 4.21 Dimensionless maximum temperature variations for different Ekman 
numbers (Re=750, β=2.67, silicon disk, water, b/dn=0.5, qw=125 kW/m2). 

 

Figure 4.21 shows the results for the dimensionless maximum temperature 

variation at the interface, maximum temperature inside the solid and maximum–to–

minimum temperature difference at the interface for different time instants with water as 

the cooling fluid for various Ekman numbers. The maximum temperature within the solid 

was encountered at the outlet adjacent to the heated surface (z= –b, r=rd). The 

temperatures rise with time as the solid disk and the fluid store heat showing a rapid 

response at the earlier part of the heating process until the thermal storage capacity 

reaches its limit at steady state. The maximum–to–minimum temperature difference at the 

interface increases with time as more heat flows through the solid disk and transmitted to 
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the fluid. It may be noted that the magnitude of the dimensionless temperature as well as 

the time required to reach the steady state condition becomes smaller as the Ekman 

number decreases. This is because the magnitude of fluid velocity nears the solid–fluid 

interface that controls the convective heat transfer rate increases with the increment of the 

rotational rate of the disk or the reduction of Ekman number. 
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Figure 4.22 Average Nusselt number variations for different Ekman numbers (Re=750, 
β=2.67, silicon disk, water, b/dn=0.5, qw=125 kW/m2). 

 

The average Nusselt number variations with time for various Ekman numbers are 

shown in figure 4.22. As expected, the average Nusselt number is large at the early part 

of the transient and monotonically decreases with time ultimately reaching the value for 

the steady state condition. Throughout the transient heating process, the average Nusselt 

number is greater at larger spinning rate or smaller Ekman number. As the Ekman 

number decreases from ∞ to 6.62x10–5 the average Nusselt number increases by an 
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average of 20.81% when the Reynolds number is kept constant at 750. This observation 

is in agreement with Rice et al. [46]. 

Another important factor that controls the transient heat transfer process is the 

thickness of the disk. Its effect on the dimensionless maximum temperature variation at 

the interface, maximum temperature inside the solid and maximum–to–minimum 

temperature difference at the interface for different time instants with water as the 

cooling fluid is presented in figure 4.23. The plate thickness significantly affects the 

temperature distribution. It may be noted that as the thickness of the disk increases, the 

time needed to achieve the steady state condition increases. This is due to more storage 

capacity of heat within the solid. 
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Figure 4.23 Dimensionless maximum temperature variations for different dimensionless 
disk thicknesses (Re=1,100, Ek=1.20x10–4, β=2.67, silicon disk, water, and 
qw=125 kW/m2). 
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Also, the temperature at the solid–fluid interface remains lower and more uniform due to 

higher thermal resistance of the solid to the path of heat flow and higher opportunity for 

radial conduction within the disk. 
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Figure 4.24 Average Nusselt number variations for different dimensionless disk 
thicknesses (Re=1,100, Ek=1.20x10–4, β=2.67, silicon disk, water, and 
qw=125 kW/m2). 

 

Figure 4.24 shows the average Nusselt number variation as a function of time for 

five distinct plate thicknesses using silicon as the solid material. The average Nusselt 

number is higher for a thinner disk. A thinner disk offers lower thermal resistance to the 

path of the heat flow. In addition, the local convective heat transfer coefficient at the 

impingement region turns out to be higher because of less smoothing out of interfacial 

transport due to lower opportunity for radial conduction within the disk. There result in 

higher average Nusselt number for a thinner disk. 
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The effect of solid material properties on transient heat transfer is presented in 

figure 4.25. The studied materials were aluminum, Constantan, copper, silicon, and silver 

having different thermo–physical properties. For all materials, the temperature changes 

occur faster at the earlier part of the heating process and the slope gradually decays when 

the steady state approaches. The change of slope shows the thermal energy balance 

response of the transient conduction–convection heat transfer at the solid–fluid interface. 

It can be observed that a material having a lower thermal conductivity such as Constantan 

maintains a higher temperature at the solid disk interface and within the solid as the 

thermal conductivity controls how effectively the heat flows and distributes through the 

material.  
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Figure 4.25 Dimensionless maximum temperature variations for different solid 
materials (Re=650, Ek=2.65x10–4, b/dn=0.5, β=2.67, water, and qw=125 
kW/m2).  
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For the same reason, the maximum temperature within the solid and that at the 

interface are significantly different for Constantan, whereareas about the same for both 

silver and aluminum. The thermal diffusivity of the material also contributes to the 

transient heat transfer process. As noticed, silver and aluminum reach the steady state 

faster than Constantan due to their higher thermal diffusivity. The values of thermal 

diffusivity for the materials considered here at 303K are αsilver=1.74 x10 –4 m2/s, αaluminum 

=8.33 x10 –5 m2/s, and αConstantan= 6.20 x10 –6 m2/s.The magnitude of the temperature 

non–uniformity at the interface at steady state is controlled by thermal conductivity of the 

material. It may be noted that the thermal conductivity of Constantan (kConstantan=22.7 

W/m.K) has an average maximum–to–minimum temperature difference of 23.39 K, 

whereareas the thermal conductivity of silver (ksilver= 429 W/m.K) has only an average 

6.22 K temperature difference at the interface.  
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Figure 4.26 Average Nusselt number variations for different solid materials (Re=650, 
Ek=2.65x10–4, b/dn=0.5, β=2.67, water, and qw=125 kW/m2).  
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Figure 4.26 shows the distribution of average Nusselt number with time for the 

five materials used in this study. Constantan shows a higher average heat transfer 

coefficient compared to the other materials over the entire transient process due to its 

lower thermal conductivity. The average Nusselt number distributions of copper and 

silver are almost identical due to their similar thermal conductivity values.  

It will be also important to know how the materials responded in reaching thermal 

equilibrium based on their thickness. Figure 4.27 presents the steady state Fourier number 

(Foss) for these materials at different plate thicknesses. The steady state Fourier number 

(Foss) was defined as the time needed to approach 99.99% of the steady state local 

Nusselt number over the entire solid–fluid interface. As the thickness increases in value, 

the time to reach steady state also increases. The radial conduction becomes stronger as 

the disk thickness increases generating a more uniform heat distribution at the interface. 
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Figure 4.27 Time required to reach steady state under the effects of various material 
properties and disk thickness (Re=1,100, Ek=1.20x10–4, β=2.67, water, and 
qw=125 kW/m2). 
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However, the increment of solid thickness creates more thermal resistance to the 

heat transfer process. The thermal diffusivity of the solid plays a significant role in 

determining the duration of the transient heat transfer process. Constantan takes longer in 

reaching steady state due to its lower thermal diffusivity compared to the other materials. 

Figure 4.28 presents the time required to reach the steady state condition as a 

function of Reynolds number. The duration of the transient heat transfer decreases as the 

Reynolds number increases. This is due to quicker dissipation of heat with higher flow 

rate and lower thermal boundary layer thickness.  
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Figure 4.28 Time required to reach steady state under the effects of different Reynolds 
number (β=2.67, water, Ek=2.65x10–4, silicon disk, b/dn=0.5, and qw=125 
kW/m2). 

 

Figures 4.29 and 4.30 show the development of isothermal lines within the solid 

at different time instants. It is important to notice that at early stages of the transient heat 

transfer process, the isothermal lines grow parallel to the bottom heated surface of the 

solid disk.  
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Figure 4.29 Isothermal lines at different instants (Re=1,100, Ek=1.20x10–4, β=2.67, 
silicon disk, water, qw=125 kW/m2 , and b/dn=0.5). 

 

  
  

  
 

Figure 4.30 Isothermal lines at different instants (Re=1,100, Ek=1.20x10–4, β=2.67, 
silicon disk, water, and qw=125 kW/m2 , and b/dn=1.67). 
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As time goes on, the isothermal lines start moving upward toward lower 

temperature regions until they reach the solid–fluid interface. After that, they start to 

form concentric lines near the stagnation point and expand further down into the solid 

until a steady state condition is achieved. The temperatures inside the solid for figure 4.29 

are lower compared to figure 4.30. Also, isothermal lines have larger slope in figure 4.29. 

The increment of solid thickness creates more thermal resistance and provides a more 

uniform interface temperature due to radial heat spreading within the solid. 

Based on our numerical data, a correlation for the average Nusselt number was 

developed as a function of thermal conductivity ratio, Ekman number, Reynolds number, 

and Fourier number to accommodate most of the transport characteristics of the transient 

heat transfer during axial free liquid jet impingement on a thick solid disk spinning at a 

constant angular velocity.  
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Figure 4.31 Comparison of predicted average Nusselt number of equation 4.2 with 
present numerical data. 
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Figure 4.31 gives a graphical comparison between the numerical average Nusselt 

numbers to the average Nusselt numbers predicted by equation 4.2. The correlation that 

best fitted the numerical data can be placed in the following form: 

Nuav=1.965⋅Re0.3875⋅ Ek– 0.091⋅ ε – 0.25⋅ Fo 0.01                   (4.2) 

In developing this correlation, all average Nusselt number data corresponding to 

the variation of different parameters were used. The least squares curve fitting method 

was used. The percent difference of the predicted average Nusselt number was defined 

as: % diff = ((Nuavpred – Nuavnum)/Nuavnum) ×100. The differences between numerical and 

predicted average Nusselt number values are in the range of +10.58% to –13.83%. In 

general, the overall average difference of average Nusselt numbers was equal to 6.59%. 

The values of the dimensionless variables used in this study are: 500 ≤Re≤ 1,100, 

6.62x10–5 ≤Ek≤ 2.65x10–4, β=2.67, Pr=5.49, 227.6 ≤ε≤ 697.5 and 0.031 ≤Fo≤ 0.504. It 

should be noted from figure 4.31 that a large number of data points are well correlated 

with equation 4.2. This correlation provides a convenient tool for the prediction of 

average heat transfer coefficient during the transient heat transfer process.  
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Chapter 5 Confined Liquid Jet Impingement Model Results 
 

 
5.1 Steady State: Stationary Confined Wall with Spinning Target 

The numerical results of a confined liquid jet impingement on top of a spinning 

target or wafer are presented in terms of dimensionless solid–fluid interface temperature 

distribution and local as well as average Nusselt number variation. A characteristic 

velocity vector distribution is shown in figure 5.1.  

 

Figure 5.1 Velocity vector distribution for a confined jet impingement on a silicon 
wafer with water as the cooling fluid (Re=1,000, β=1.5, Ek=1.42x10–4, 
b/dn=0.25). 

 

It can be seen that the velocity remains almost uniform at the potential core region 

of the jet. The velocity decreases and the jet diameter increases as the fluid gets closer to 

the plate during the impingement process. Thereafter, the fluid strikes the solid surface at 
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which point there is a rapid deceleration while the flow changes direction parallel to the 

solid disk. After this, there is a brief acceleration starting the development of boundary 

layer. It can be noticed that the boundary layer thickness increases along the radius. The 

fluid between the boundary layer zone and confined top plate remains quasi–stagnant 

with a flow velocity ten times less than the inlet velocity. The proximity of the spinning 

confined plate generates a recirculation pattern in this region. 

Figure 5.1 shows the variation of local Nusselt number distributions and solid–

fluid dimensionless interface temperature plots for different Reynolds number under a 

low rotational rate of 125 RPM. All local Nusselt number distributions are half–bell 

shaped with a peak at the stagnation point. It may be noted, however, that due to spinning 

streamlines are not aligned along the disk radius, rather the fluid moves at an angle based 

on the rate of rotation. The plots in figure 5.2 reveal that dimensionless interface 

temperature decreases with jet velocity (or Reynolds number). At any Reynolds number, 

the interface temperature has the lowest value at the stagnation point (underneath the 

center of the axial opening) and increases radially along the radius reaching the highest 

value at the end of the disk. This is due to the development of thermal boundary layer as 

the fluid moves downstream from the center of the disk. The thickness of the thermal 

boundary layer increases with radius and causes the interface temperature to increase. 

Figures 5.2 confirm to us how an increasing Reynolds number contributes with a more 

effective cooling.  
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Figure 5.2 Local Nusselt number and dimensionless interface temperature distribution 
for a silicon wafer at different Re, and water as the cooling f1uid (b=0.3 
mm , Hn=0.32 cm, Ek=2.65x10–4, and qw=250 kW/m2). 
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Figure 5.3 Average Nusselt number and heat transfer coefficient comparison for 
different Reynolds number at low, intermediate and high Ekman numbers 
(qw=250 kW/m2, Hn=0.32 cm). 



www.manaraa.com

 125 

Figure 5.3 plots the average Nusselt number and average heat transfer coefficient 

as a function of Reynolds number for low, intermediate, and high Ekman numbers or 

rotational rates. It may be noted that average Nusselt number increases with Reynolds 

number. As the flow rate (or Reynolds number) increases, the magnitude of fluid velocity 

near the solid–fluid interface that controls the convective heat transfer rate increases. It 

may be also noted that at lower Reynolds number (1,500–1,700) the average heat transfer 

coefficient (or average Nusselt number) decreases with Ekman number (or increases with 

disk spinning rate). Therefore, spinning provides a positive influence on convective heat 

transfer at this Reynolds number range. The graphs intersect around 1,750 and at higher 

Reynolds number (1,800–2,000) a higher Nusselt number is observed at a lower spinning 

rate. The intersection of all graphs indicates the presence of the liquid jet momentum 

dominated region at Reynolds numbers greater than 1,750. 

The rotational rate effects on the local Nusselt number and solid–fluid 

dimensionless interface temperature are illustrated in figure 5.4. All curves on figure 5.4 

portray a half–bell shaped profile with crest at the stagnation region. This trend matches 

with previous studies by Webb and Ma [76] and Chang et al. [73]. It may be noted that 

rotational effect increases local Nusselt number and generates lower temperature over the 

entire solid–fluid interface with somewhat less intensity in comparison with the Reynolds 

number effect. An exception is the case with Ek=3.31x10–5 where the local Nusselt 

number distribution shows significantly higher values up to r/rn=6 and afterward it 

becomes lower in comparison with other plots in figure 5.4. In this particular case the 

rotation generates a positive effect at smaller radial locations, whereas at higher radial 

locations the boundary layer separates from the wall and causes an ineffective cooling. 
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This type of behavior is consistent with the results of Popiel and Boguslawski [36] where 

in rotation dominated regime the impinging jet started being underscored by the fluid 

rejection of the rotating disk.  
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Figure 5.4 Local Nusselt number and dimensionless interface temperature plots for a 
silicon wafer at different Ekman numbers and water as the cooling f1uid 
(Re=750, Q=3.54x10–2 m3/s, b=0.3 mm, Hn/dn=5.333, and qw=250 kW/m2). 

 

Figures 5.5 compares the solid–fluid interface temperature results of the present 

working fluid (water) with three other coolants that have been considered in previous 

thermal management studies, namely ammonia (NH3), flouroinert (FC–77) and oil (MIL–

7808). Figure 5.6 shows the corresponding Nusselt number distributions. It may be 

noticed that water presents lower interface temperature and Nusselt number distribution 

in comparison with FC–77, NH3 and MIL–7808 at most locations. Ammonia on the other 

hand has the overall highest interface temperature. 
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Figure 5.5 Interface temperature for different cooling fluids (Re=750, Q=3.54x10–2 

m3/s, Ω=125 RPM, b=0.3 mm, Hn/dn=2.67, and qw=250 kW/m2). 
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Figure 5.6 Local Nusselt number for different cooling fluids (Re=750, Q=3.54x10–2 
m3/s, Ω =125 RPM, b=0.3 mm, Hn/dn=2.67, and qw=250 kW/m2). 
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Figure 5.7 Local Nusselt number and dimensionless interface temperature distributions 
for different solid materials with water as the cooling fluid (Re=1,500, 
Q=7.08x10–2 m3/s, qw=250 kW/m2, Ω=125 RPM, Hn=0.32 cm, qw=250 
kW/m2). 

 

Figure 5.7 shows the dimensionless solid–fluid interface temperature and local 

Nusselt number distribution plots respectively as a function of the dimensionless radial 

distance measured from the axis–symmetric impingement axis for different solid 

materials with water as the working fluid. The numerical simulation was carried for a set 

of materials, namely copper, silver, Constantan and silicon, having different thermo–

physical properties. Results for plain surface (zero thickness of the disk) are also plotted 

to identify the extent of conjugate effects. The temperature distribution plots reveal how 

the thermal conductivity of the solids affects the heat flux distribution that controls the 

local interface temperature. It may be noted that Constantan has the lowest temperature at 

the impingement axis and the highest at the outer edge of the disk. This large interface 
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temperature variation is due to its lower thermal conductivity. As the thermal 

conductivity increases, the thermal resistance within the solid becomes lower and the 

interface temperature becomes more uniform as seen in the plots corresponding to copper 

and silicon. The cross–over of the curves of the four materials and plain surface occurred 

due to a constant fluid flow and heat flux rate that provides a constant thermal energy 

transfer for all circumstances. Narrow and elevated bell shape pattern is seen in figure 5.4 

for all solid materials with low thermal conductivity. Conversely high thermal 

conductivity materials like copper and silver portray a more uniform Nusselt number 

distribution in general.  

Considering the trends of heat transfer enhancement as functions of thermal 

conductivity ratio, nozzle–to–plate spacing, Prandtl number, Ekman number, and 

Reynolds number and by accommodating most of the transport characteristics of a 

confined liquid jet impingement cooling, a correlation was developed in the following 

form:  

Nuav=Re1.26 ⋅ Ek–0.1111 Pr–2.58 β0.5 ε–0.65                 (5.1) 

Figure 5.8 gives the comparison between the numerical average Nusselt numbers 

to average Nusselt numbers predicted by equation 5.1. The percent difference of the 

predicted average Nusselt number was defined as: % diff = ((Nuavpred–Nuavnum)/Nuavnum) 

×100. The differences between numerical and predicted average Nusselt number values 

are in the range –20.36% to +14.47%. The mean value of the error was 7.70%. The 

ranges of the dimensionless variables in this study are: 750 ≤Re≤ 2,000, 6.62x10–5 ≤Ek≤ 

2.65x10–4, Pr=5.49, 227.6 ≤ε≤ 697.5. The Prandtl number exponent was derived from 
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Martin’s equation [144] for single round nozzle impinging jet. It should be noted from 

figure 5.8 that a large number of data points are well correlated with equation 5.1.  
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Figure 5.8 Average Nusselt number correlation results for various studied parameters. 

 
The deviation is primarily in the core region where the heat transfer values are 

larger under large Reynolds number and different spinning rates. This correlation 

provides a convenient tool for the prediction of average heat transfer coefficient under 

confined liquid jet impingement on top of a spinning disk. The major difference between 

past studies and the present investigation is the accounting for conduction within the solid 

wafer and fluid for various materials, plus the nozzle–to–plate spacing ratio as a part of 

the correlation.  

One of the papers used for the validation of this numerical study was the 

experimental work carried out by Garimella and Rice [75] using flouroinert (FC–77) as 

the coolant. This liquid was tested for heat removal under confined liquid jet 
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impingement on a stationary disk (Ek=∞). The simulation attempted to duplicate the 

exact conditions of that experiment. Figure 5.9 compares the variations of local Nusselt 

number distribution along the solid–fluid interface obtained from the simulation with the 

correlation developed from the experimental data. The percent difference of the predicted 

average Nusselt number was defined as: % diff = ((Nuavpred – Nuavnum)/Nuavnum) ×100. 

Considering the errors inherent in any experimental measurements (the reported 

uncertainty range from –2.46% to 3.32%) as well as discretization and round off errors in 

the simulation, the comparison is quite satisfactory. A similar profile has also been 

documented by Ma et al. [69]. 
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Figure 5.9 Local Nusselt number distribution for a silver disk with FC–77 as the 
cooling fluid (Hn/dn=4, qw=250 kW/m2). 

 

The experimental work carried out by Carper et al. [35] to determine the average 

heat transfer coefficient of a rotating disk, with an approximately uniform surface 

temperature, cooled by a single oil liquid jet impinging normal to the surface, was also 
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used for the validation of the numerical results. The authors presented correlations that 

related the average Nusselt number to rotational Reynolds number, jet Reynolds number, 

and Prandtl number.  
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Figure 5.10 Average Nusselt number correlation for various Reynolds numbers and 
Ekman number and three different Pr values of liquid oil axis–symmetric jet 
impingement. 

 

The simulation has attempted to duplicate numerically the exact conditions of that 

experiment. The computation was conducted for three nominal values of Tj of 375, 331 

and 320 K resulting in values of Pr of 87, 270 and 400 respectively. The rotational 

Reynolds number was kept constant at a value equal to 26,000. As a result of these 

behavior three distinct angular velocities values (Ω) had to be used: 140, 480 and 730 

RPM corresponding to the Prandtl numbers of 87, 270 and 400 respectively. The disk had 

a diameter of 10 cm and thickness of 2.54 cm and was made of 7075–T6 Aluminum, a 
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material with a relatively high thermal conductivity of 121.4 W/mK. As seen in figure 

5.10, the agreement of the results from the average Nusselt number correlation of Carper 

et al. [35] with the present data is quite good. Three different plots based on this 

correlation have been included in order to make a qualitative and quantitative 

comparison. The percent difference of the experimental average Nusselt number was 

defined in the form: % diff = ((Nuavnum – Nuavexp)/Nuavexp) ×100. The average Nusselt 

number uncertainties of Carper et al. [35] range from –6% to 3.96% for all Prandtl 

numbers. An additional average Nusselt number plot was included from Carper and 

Deffenbaugh [34] for Prandtl number of 270. The average Nusselt number uncertainties 

for Carper and Deffenbaugh [34] correlation range from –9.21% to 18.34%. This 

validation with available experimental data may provide good level of confidence on the 

numbers obtained during present numerical simulation.  

5.2 Steady State: Spinning Confined Wall with Stationary Target 

This section describes the heat transfer characteristics of a confined liquid jet 

impingement under a spinning confinement disk. Figure 5.11 shows the variation of local 

Nusselt number and solid–fluid dimensionless interface temperature distributions for 

different Reynolds number under a low rotational rate (Ek=4.25x10–4). All local Nusselt 

number distributions are half–bell shaped with a peak at the stagnation point. It may be 

noted, however, that due to spinning streamlines are not aligned along the disk radius, 

rather the fluid moves at an angle based on the rate of rotation. The positive influence of 

the spinning of the confinement disk can be observed particularly at Re=750, at which 

point the Nusselt number at r/rd> 0.6 becomes higher in comparison with that of the 
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Reynolds number of 1,000. The plots in figure 5.11 reveal that dimensionless interface 

temperature decreases with jet velocity (or Reynolds number). 
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Figure 5.11 Local Nusselt number and dimensionless interface temperature distributions 
for a silicon disk with water as the cooling fluid for different Reynolds 
numbers (Ek=4.25x10–4, β=2.0, b/dn=0.25). 

 

At any Reynolds number, the dimensionless interface temperature has the lowest 

value at the stagnation point (underneath the center of the axial opening) and increases 

radially downstream reaching the highest value at the end of the disk. This is due to the 

development of thermal boundary layer as the fluid moves downstream from the center of 

the disk. The thickness of the thermal boundary layer increases with radius and causes the 

interface temperature to increase. The increment of the dimensionless interface 

temperature coincides with the thickening of thermal boundary layer. A lower interface 

temperature distribution at Re=750 is attained in comparison to Re=1,000 for the 

dimensionless radial distance, r/rd> 0.6. This is due to the fact that the tangential velocity 
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from the top plate penetrates into the thermal boundary layer thickness adjacent to the 

heated stationary disk. This effect remains stronger when the momentum of the jet fluid 

is lower. At higher Reynolds numbers (i.e., Re≥ 1,000), the jet fluid momentum 

overcomes the tangential velocity effects and increases the dimensionless interface 

temperature. Figures 5.11 confirm to us how an increasing Reynolds number contributes 

to a more effective cooling. Similar profiles have been documented by Garimella and 

Nenaydykh [77] and Ma et al. [69, 81].  

Figure 5.12 plots the average Nusselt number as a function of Reynolds number 

for low, intermediate, and high Ekman numbers. It may be noted that average Nusselt 

number increases with Reynolds number. As the flow rate (or Reynolds number) 

increases, the magnitude of fluid velocity near the solid–fluid interface that controls the 

convective heat transfer rate increases. Furthermore, at a particular Reynolds number, the 

Nusselt number decrease with Ekman number (or gradually increases with the increment 

of disk spinning rate). This behavior confirms the positive influence of the rotational rate 

on the average Nusselt number down to Ek=1.52x10–4 that corresponds to a spinning rate 

of 350 RPM. 

However at Ek=1.06x10–4 (spinning rate of 500 RPM) the average Nusselt 

number is lower than the stationary disk (Ek=∞). At high spinning rate the thermal 

boundary layer thickness increases due to suction created by the spinning motion of the 

confinement plate. Therefore the heat transfer coefficient decreases compared to the 

stationary disk; the average Nusselt numbers decreases by 39% at Re=750 and by 2% at 

Re=1.500. It may be also noticed that the average Nusselt number plots gets closer to 
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each other as the Reynolds number increases indicating that curves will intersect at 

higher Reynolds numbers. 
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Figure 5.12 Average Nusselt number variations with Reynolds number at different 
Ekman numbers for a silicon disk with water as the cooling fluid (β=2.0, 
b/dn=0.25). 

 

These intersections indicate the presence of a liquid jet momentum dominated 

region at higher Reynolds numbers. From the numerical results it was observed that the 

heat transfer is dominated by impingement when Re.Ek> 0.11 and dominated by disk 

rotation when Re.Ek< 0.07. In between there limits, both of these effects play important 

roles in determining the variations of average Nusselt number. This type of behavior is 

consistent with the experimental results of Brodersen et al. [38] where the ratio of jet and 

rotational Reynolds numbers was used to characterize the flow regime. 
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The rotational rate effects on the local Nusselt number and solid–fluid 

dimensionless interface temperature are illustrated in figures 5.13 and 5.14 for a 

Reynolds number of 750 and dimensionless nozzle to target spacing (β) equal to 3.  
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Figure 5.13 Local Nusselt number distributions for a silicon disk with water as the 
cooling f1uid at different Ekman numbers (Re=750, β=3.0, b/dn=0.25). 

 

It may be noted that rotational effect increases local Nusselt number and generates lower 

temperature over the entire solid–fluid interface with somewhat less intensity in 

comparison with the Reynolds number effect. Figure 5.14 shows that dimensionless 

interface temperature decreases with the increment of the rotational rate; as the Ekman 

number decreases from ∞ to 1.42x10–4 the local Nusselt number increases by an average 

5.56% in figure 5.13 and the dimensionless interface temperature decreases by an average 

2.32% in figure 5.14 under a Reynolds number of 750. 
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Figure 5.14 Dimensionless interface temperature distributions for a silicon disk with 
water as the cooling fluid at different Ekman numbers (Re=750, β=3.0, 
b/dn=0.25). 

 

The enhancement of Nusselt number due to rotation is primarily caused by 

enhancement of local fluid velocity adjacent to the heated disk surface. The tangential 

velocity due to rotation combined with axial and radial velocities due to jet momentum 

results in an increased magnitude of velocity vector starting from the center of the disk. 

The effects of disk thickness variation on the solid–fluid dimensionless interface 

temperature and local Nusselt number are shown in figures 5.15 and 5.16 respectively. In 

these plots, silicon has been used as the disk material and water as the cooling fluid for 

Reynolds number of 1,500 and rotational rate of 350 RPM (Ek=1.52x10–4). The 

dimensionless solid–fluid interface temperature increases from the impingement region 

all the way to the end of the disk.  
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Figure 5.15 Dimensionless interface temperature distributions for different silicon disk 
thicknesses with water as the cooling fluid (Re=1,500, Ek=1.52x10–4, 
β=2.0). 

 

When temperature is lower in the stagnation region a higher outflow temperature 

is obtained. This is quite expected since the total heat transferred to the disk as well as the 

fluid flow rates are the same for all the cases. It may be noted that the disk thickness 

variation results intersect with each other around dimensionless radial distance of 

r/rd=0.65. Thicker disks generate more uniform dimensionless interface temperature due 

to larger radial conduction within the disk. The local Nusselt number plots in figure 5.16 

change significantly with the variation of disk thickness. In all cases, it is evident that the 

Nusselt number is sensitive to the solid thickness especially at smaller radii where higher 

Nusselt number are obtained due to rapid development of thermal boundary layer. 
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Figure 5.16 Local Nusselt number distributions for different silicon disk thicknesses 
with water as the cooling fluid (Re=1,500, Ek=1.52x10–4, β=2.0). 

 

Eight different nozzle–to–plate spacing ratio (β) from 0.25 to 5 were modeled for 

water as the coolant and silicon as the disk material. The effects of nozzle to target 

spacing on the dimensionless interface temperature and local Nusselt number 

distributions at a spinning rate of 125 RPM or (Ek=4.25x10–4) and Reynolds number of 

750 are shown in figures 5.17 and 5.18. It may be noticed that the impingement height 

quite significantly affects the Nusselt number distribution particularly at the stagnation 

region. It may be noticed that a higher local Nusselt number at the stagnation region is 

obtained when the nozzle is brought close to the heated disk (β=0.25). The spinning 

motion of the confinement disk really penetrates through the thermal boundary layer 

adjacent to the heated stationary disk and provides a larger fluid velocity and therefore a 

larger rate of convective heat transfer. 
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Figure 5.17 Dimensionless interface temperature distributions for a silicon disk with 
water as the cooling fluid for different nozzle to target spacings (Re=750, 
Ek=4.25x10–4, b/dn=0.25). 
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Figure 5.18 Local Nusselt number distributions for a silicon disk with water as the 
cooling fluid for different nozzle to target spacings (Re=750, Ek=4.25x10–4, 
b/dn=0.25). 
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As the nozzle is moved away from the disk (β=0.25–1), the local Nusselt number 

decreases. This is due to smaller effect of the rotational velocity of the confinement disk. 

Also, as the spacing is increased, the jet fluid needs to travel a larger distance through the 

existing fluid column between target and confinement disks and thereby loses its 

momentum. The minimum stagnation Nusselt number is seen for β=1 and also the shape 

of the curve somewhat changes. The nozzle to target ratio of β=2 generates an optimal 

mix of the impinging jet flow with the rotationally induced flow resulting in higher heat 

transfer rate. There is only small change in Nusselt number values at spacings greater 

than β=2. This observation is in–line with the previous study by Hung and Lin [74] for a 

confined jet impingement with a stationary disk.  
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Figure 5.19 Dimensionless interface temperature distributions for different cooling 
fluids with silicon as the disk material (Re=1,000, β=2.0, b/dn=0.25). 
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Figures 5.19 compares the dimensionless solid–fluid interface temperature results 

of the present working fluid (water) with three other coolants that have been considered 

in previous thermal management studies, namely ammonia (NH3), flouroinert (FC–77), 

and oil (MIL–7808) under a Reynolds number of 1,000. Even though the rotational rate 

(Ω) for the top confining wall was set at 350 RPM the variation of Ekman number 

occurred since the density (ρ) and dynamic viscosity (µ) are different for each fluid. The 

interface temperature distribution of figure 5.19 shows similar results for FC–77 and 

MIL–7808. It may be noticed that both ammonia and water present higher dimensionless 

interface temperature distribution in comparison with MIL–7808 and FC–77. Water 

shows a larger variation of dimensionless interface temperature along the radius of the 

disk. The water and ammonia curves intersect at a dimensionless radial distance of 

r/rd=0.65.  
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Figure 5.20 Local Nusselt number distributions for different cooling fluids with silicon 
as the disk material (Re=1,000, β=2.0, b/dn=0.25). 
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Figure 5.20 shows the corresponding local Nusselt number distributions. It may 

be noticed that MIL–7808 presents the highest local Nusselt number values in 

comparison with water, NH3 and FC–77 for a dimensionless radial distance, r/rd< 0.45. 

Only FC–77 exhibits a higher heat removal rate beyond this point. MIL–7808 shows the 

largest variation of local Nusselt number primarily because of its large variation of 

viscosity with temperature. Ammonia provides the lowest Nusselt number because of its 

small Prandtl number. Higher Prandtl number fluids lead to a thinner thermal boundary 

layer, and more effective heat removal rate at the interface. Present working fluid results 

are in agreement with Li et al. [80] findings where larger Prandtl number corresponded to 

a higher recovery factor. Thus, different Prandtl numbers represent different thermal 

boundary layer thicknesses and different heat generations by viscous dissipation of the 

fluids. 
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Figure 5.21 Local Nusselt number and dimensionless interface temperature distributions 
for different solid materials with water as the cooling fluid (Re=1,000, 
Ek=4.25x10–4, β=2.0, b/dn=0.25). 
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The dimensionless solid–fluid interface temperature and local Nusselt number 

distribution plots as a function of a dimensionless radial distance (r/rd) measured from the 

axis–symmetric impingement axis for different solid materials with water as the working 

fluid are plotted in figure 5.21. The numerical simulation was carried out for a set of 

materials, namely copper, silver, Constantan, and silicon, having different thermo–

physical properties at Reynolds number of 1,000 and Ekman number of 4.25x10–4. 

Results for plain surface (zero thickness of the disk) are also plotted to identify the extent 

of conjugate effects. The temperature distribution plots reveal how the thermal 

conductivity of the solid affects the heat flux distribution that controls the local interface 

temperature. It may be noted that plain surface has the lowest temperature at the 

impingement axis and the highest at the outer edge of the disk.  

The interface temperature variation for Constantan is also quite large due to its 

lower thermal conductivity. As the thermal conductivity increases, the thermal resistance 

within the solid becomes lower and the interface temperature becomes more uniform as 

seen in the plots corresponding to copper and silicon. The cross–over of the curves of the 

four materials and plain surface occurred due to a constant fluid flow and heat input rate 

that provides a constant thermal energy transfer for all circumstances. Narrow and 

elevated bell shape pattern is seen in figure 5.21 for solid materials with lower thermal 

conductivity. As the thermal conductivity is increased, a more uniform Nusselt number 

distribution is obtained. 

One of the goals of this work was to develop a predictive trend of the average heat 

transfer coefficient. A correlation for the average Nusselt number was developed as a 

function of thermal conductivity ratio, nozzle to target spacing, disk thickness, Ekman 
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number, and Reynolds number to accommodate most of the transport characteristics of a 

confined liquid jet impingement cooling process. A correlation that best fitted the 

numerical data can be placed in the following form: 

Nuav=1.9762⋅β−0.01 ⋅Re0.75⋅Ek−0.111⋅(b/dn)
 −0.05⋅ε−0.69                 (5.2) 

In developing this correlation, all average Nusselt number data corresponding to 

the variation of different parameters were used. Only data points corresponding to water 

as the fluid were used because the number of average heat transfer data points for other 

fluids was small. Figure 5.22 gives the comparison between the numerical average 

Nusselt numbers to average Nusselt numbers predicted by equation 5.2.  
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Figure 5.22 Comparison of predicted average Nusselt number of equation 5.2 with 
present numerical data. 
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The percent difference of the predicted average Nusselt number was defined as: 

%diff = ((Nuavpred – Nuavnum)/Nuavnum) ×100. The average Nusselt number deviates in the 

range of –13.8% to +15.3% from the average Nusselt numbers predicted by equation 5.2. 

The mean deviation of the correlation was equal to 6.8%. The ranges of the 

dimensionless variables used are: 500 ≤Re≤ 1,500, 4.25x10–5 ≤Ek≤ 1.06x10–4, 0.25 ≤β≤ 

5, Pr=5.49, 0.25 ≤b/dn≤ 1.67, and 227.6 ≤ε≤ 627.6. It should be noted from figure 5.22 

that a large number of data points are well correlated by equation 5.2. This correlation 

provides a convenient tool for the prediction of average heat transfer coefficient under 

liquid jet impingement with a spinning confinement disk. The major difference between 

past studies and the present investigation is the accounting for conduction within the solid 

wafer and fluid for various materials, the spinning rate of the confinement disk, and the 

nozzle to target spacing ratio as a part of the correlation. 

Three other papers used for the validation of this numerical study were the 

analytical works carried out by Scholtz and Trass [6], Nakoryakov et al. [68], and Liu et 

al. [17] using fluids with Prandtl number greater than unity as coolants. The fluids were 

tested for heat removal under free liquid jet impingement on a heated flat surface 

maintained at uniform heat flux. The graphical representation of actual numerical Nusselt 

number results at the stagnation point at different Reynolds number are shown in figure 

5.23. The results shown in figure 5.23 were on average within 8.17% of Scholtz and 

Trass [6], within 6.67% of Nakoryakov et al. [68], and within 6.75% of Liu et al. [17].  

 

 



www.manaraa.com

 148 

10

16

22

28

34

40

46

52

58

64

500 750 1000 1250 1500 1750

Reynolds Number, Re

S
ta
g
n
a
ti
o
n
 N
u
ss
e
lt
 n
u
m
b
e
r
, 
N
u o

Ek = 

Ek=

Scholtz and Trass, [6]

Nakoryakov et al., [68]

Liu et al., [17]

  Ek = 1.06x10-4

    Ek = 1.52x10-4

 (Ek = ∞)

 (Ek = ∞)

 (Ek = ∞)

 

Figure 5.23 Stagnation Nusselt number comparison of Scholtz and Trass [6], 
Nakoryakov et al. [68], and Liu et al. [17] with actual numerical results 
under different Reynolds and Ekman numbers (dn=1.2 mm, b=0.3 mm). 

 

The percent difference of the predicted of local Nusselt number at the stagnation 

was defined as: %diff = ((Nuonum – Nuoexp)/ Nuoexp) ×100. The local Nusselt number under 

Reynolds numbers of 750, 1,000, 1,250 and 1,500 correlates with an average difference 

margin of 11.83%, 6.31%, 2.26%, and 8.40% respectively. Considering the inherent 

discretization and round off errors, this comparison of Nusselt number at the stagnation 

point is also quite satisfactory.  
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Chapter 6 Partially–confined Liquid Jet Impingement Model Results 
 

 

6.1 Steady State Cooling of Spinning Target  

The numerical results of conjugate heat transfer of a steady laminar flow by a 

partially–confined liquid jet impingement on a uniformly heated and spinning disk of 

finite thickness and radius are presented in terms of its dimensionless interface 

temperature distributions and local as well as average Nusselt number variation. The 

examine parameters are: several flow rates or jet Reynolds numbers, six spinning rates or 

Ekman number, five different disk thicknesses and four nozzle to target spacings.  

 

Figure 6.1 Velocity vector distribution for a partially–confined jet impingement on a 
silicon disk with water as the cooling fluid (Re=475, Ek=4.25x10–4, 
rp/rd=0.5, β=0.5, b/dn=0.5). 

 

A typical velocity vector distribution is shown in figure 6.1. It can be seen that the 

velocity remains almost uniform at the potential core region of the jet. The velocity 
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decreases as the fluid jet expands in the radial direction as it approaches the target plate 

during the impingement process. The direction of motion of the fluid particles shifts by as 

much as 90o. After this, the fluid accelerates creating a region of high velocity wall jet 

within the confined fluid medium. It can be noticed that as the boundary layer thickness 

increases downstream and the frictional resistance from the walls are eventually 

transmitted to the entire film thickness. This effect is observed once the fluid leaves the 

confined region and moves downstream with a free surface on the top. The vectors in the 

viscous zone show a parabolic profile going from a minimum value at the solid–fluid 

interface to a maximum at the free surface. The boundary layer develops rapidly and the 

velocity of the fluid decreases as it spreads radially along the disk. It may be noted, 

however, that due to spinning streamlines are not aligned along the disk radius, rather the 

fluid moves at an angle based on the rate of rotation. The three different regions observed 

in the present investigation are in agreement with the experiments of Liu et al. [17]. 

Figure 6.2 presents the free surface height distribution for different plate to disk 

confinement ratios when the jet strikes the center of the disk while it is spinning at a rate 

of 125 RPM (Ek=4.25x10–4). It can be seen that the fluid spreads out radially as a thin 

film. The film thickness decreases as the plate to disk confinement ratio decreases under 

the same spinning rate and flow rate. This behavior occurs due to dominance of surface 

tension and gravitational forces that form the free surface as the fluid leaves the 

confinement zone and moves downstream. When rp is increased, the frictional resistance 

from both walls slows down the momentum and results in greater film thickness. For the 

conditions considered in the present investigation, a sudden drop in fluid height occurs 

for rp/rd< 0.333 because the equilibrium film height for free surface motion is 
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significantly lower than confinement height. In this situation, liquid may not cover all the 

way to the end of the confinement disk and free surface may start to form within the 

confinement region to provide a smooth streamline for the free surface. At rp/rd≥ 0.5, the 

confinement region is fully covered with fluid and a smooth transition is seen in film 

height distribution after exit.  
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Figure 6.2 Free surface height distribution for different plate to disk confinement ratio 
with water as the cooling f1uid (Re=450, Ek=4.25x10–4, β=0.5, b/dn=0.5).  

 

Figure 6.3 shows the local Nusselt number and the dimensionless interface 

temperature variation for different Reynolds number under a rotational rate of 125 RPM 

(Ek=4.25x10–4). The plots reveal that dimensionless interface temperature decreases with 

jet velocity (or Reynolds number). At any Reynolds number, the dimensionless interface 

temperature has the lowest value at the stagnation point (underneath the center of the 

axial opening) and increases radially downstream reaching the highest value at the end of 



www.manaraa.com

 152 

the disk. This is due to the development of thermal boundary layer as the fluid moves 

downstream from the center of the disk. The thickness of the thermal boundary layer 

increases with radius and causes the interface temperature to increase. All local Nusselt 

number distributions are half–bell shaped with a peak at the stagnation point. Figure 6.3 

confirm to us how an increasing Reynolds number contributes to a more effective 

cooling. Similar profiles have been documented by Garimella and Nenaydykh [77] and 

Ma et al. [69, 81]. 
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Figure 6.3 Local Nusselt number and dimensionless interface temperature distributions 
for a silicon disk with water as the cooling fluid for different Reynolds 
numbers (Ek=4.25x10–4, β=0.5, b/dn=0.5, rp/rd=0.667). 

 

Figure 6.4 plots the average Nusselt number as a function of Reynolds number for 

low, intermediate, and high Ekman numbers. It may be noted that average Nusselt 

number increases with Reynolds number. As the flow rate (or Reynolds number) 

increases, the magnitude of fluid velocity near the solid–fluid interface that controls the 
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convective heat transfer rate increases. Furthermore, at a particular Reynolds number, the 

Nusselt number gradually increases with the increment of disk spinning rate. 
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Figure 6.4 Average Nusselt number variations with Reynolds number at different 
Ekman numbers for a silicon disk with water as the cooling fluid (β=0.5, 
b/dn=0.5, rp/rd=0.667).  

 

This behavior confirms the positive influence of the rotational rate on the average 

Nusselt number down to Ek=1.25x10–4 that corresponds to a spinning rate of 425 RPM. It 

may be also noticed that the average Nusselt number plots get closer to each other as the 

Reynolds number increases indicating that curves will intersect at higher Reynolds 

numbers. These intersections indicate the presence of a liquid jet momentum dominated 

region at higher Reynolds numbers. From the numerical results it was observed that the 

heat transfer is dominated by impingement when Re.Ek> 0.124 and dominated by disk 

rotation when Re.Ek< 0.092. In between there limits, both of these effects play an 

important role in determining the variations of average Nusselt number. This type of 
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behavior is consistent with the experimental results of Brodersen et al. [38] where the 

ratio of jet and rotational Reynolds numbers was used to characterize the flow regime. 
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Figure 6.5 Local Nusselt number and dimensionless interface temperature distributions 
for a silicon disk with water as the cooling f1uid at different Ekman 
numbers (Re=540, β=0.25, b/dn=0.5, and rp/rd=0.667). 

 

The rotational rate effects on the local Nusselt number and dimensionless 

interface temperature are illustrated in figure 6.5 for a Reynolds number of 540 and 

dimensionless nozzle–to–plate spacing (β) equal to 0.25. It may be noted that rotational 

effect increases local Nusselt number and generates lower temperature over the entire 

solid–fluid interface with somewhat less intensity in comparison with the Reynolds 

number effect. In addition, figure 6.5 shows that as the Ekman number decreases from ∞ 

to 7.08x10–5 the local Nusselt number increases by an average of 24.02% and the 

dimensionless interface temperature decreases by an average of 8.34%. The enhancement 

of Nusselt number due to rotation is primarily caused by enhancement of local fluid 
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velocity adjacent to the rotating disk surface. The tangential velocity due to rotation 

combined with axial and radial velocities due to jet momentum increases the magnitude 

of the velocity vector starting from the center of the disk.  
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Figure 6.6 Local Nusselt number and dimensionless interface temperature distributions 
for different silicon disk thicknesses with water as the cooling fluid 
(Re=450, Ek=4.25x10–4, β=0.5, rp/rd=0.667). 

 

The effects of disk thickness variation on the dimensionless interface temperature 

and local Nusselt number are shown in figure 6.6. The dimensionless interface 

temperature increases from the impingement region all the way to the end of the disk. It 

may be noted that the curves intersect with each other at a dimensionless radial distance 

of r/rd=0.55. The thicker disks generate more uniform dimensionless interface 

temperature due to larger radial conduction within the disk. The local Nusselt number 

plots change slightly with the variation of disk thickness. In all cases, it is evident that the 

Nusselt number is more sensitive to the solid thickness at the core region where higher 
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values are obtained. For a lower stagnation temperature, the outlet temperature tends to 

be relatively higher under constant flow rate and heat flux conditions. This is quite 

expected because of the overall energy balance of the system. This phenomenon has been 

documented by Lachefski et al. [54]. 
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Figure 6.7 Local Nusselt number and dimensionless interface temperature distributions 
for a silicon disk with water as the cooling fluid for three different nozzle to 
target spacing ratio (Re=750, Ek=4.25x10–4, b/dn=0.5, rp/rd=0.667). 

 

Three different nozzle to target spacing ratios (β) from 0.25 to 1 were modeled 

and the results are shown in figure 6.7. It may be noticed that the impingement height 

quite significantly affects the Nusselt number distribution. A higher local Nusselt number 

is obtained when the nozzle is brought close to the heated disk (β=0.25). The smaller gap 

between the nozzle and the target disk avoids loss of momentum as the jet travels through 

the confined fluid medium and results in a larger fluid velocity and therefore a larger rate 

of convective heat transfer. As the nozzle is moved away from the disk, the local Nusselt 
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number decreases. This observation is in–line with the previous study by Hung and Lin 

[74] for a confined jet impingement on a stationary disk.  
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Figure 6.8 Local Nusselt number and dimensionless interface temperature distributions 
for different cooling fluids for silicon as the disk material (Re=750, β=0.5, 
b/dn=0.5, rp/rd=0.667). 

 

Figure 6.8 compares the dimensionless interface temperature and local Nusselt 

number results of the present working fluid (water) with three other coolants, namely 

ammonia (NH3), flouroinert (FC–77) and oil (MIL–7808) under a Reynolds number of 

750. Even though the rotational rate (Ω) for the impingement disk was set at 350 RPM 

the variation of Ekman number occurred since the density (ρ) and dynamic viscosity (µ) 

are different for each fluid. It may be noticed that MIL–7808 presents the highest 

dimensionless interface temperature and water has the lowest value. Ammonia shows the 

most uniform distribution of temperature along the radius of the disk. MIL–7808 presents 

the highest local Nusselt number values over the entire radial distance. Ammonia on the 
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other hand provides the lowest Nusselt number. Higher Prandtl number fluids lead to a 

thinner thermal boundary layer and therefore more effective heat removal rate at the 

interface. Present working fluid results are in agreement with Li et al. [80] findings where 

a larger Prandtl number corresponded to a higher recovery factor. 

0

8

16

24

32

40

48

56

64

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 Dimensionless Radial Location, r/rd

L
o
ca
l 
N
u
ss
el
t 
N
u
m
b
er
,N
u

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

D
im
e
n
si
o
n
le
ss
 I
n
te
rf
a
c
e 

T
e
m
p
e
ra
tu
r
e ,, ,,

ΘΘ ΘΘ
in
t

Aluminum
Constantan
Copper
Silver
Silicon
Temp, Aluminum
Temp,Constantan
Temp, Copper
Temp, Silver
Temp, Silicon

 

Figure 6.9 Local Nusselt number and dimensionless interface temperature distributions 
for different solid materials with water as the cooling fluid (Re=875, 
Ek=4.25x10–4, β=0.5, b/dn=0.5, rp/rd=0.667). 

 

Figure 6.9 shows the dimensionless interface temperature and local Nusselt 

number distribution plots as a function of dimensionless radial distance (r/rd) measured 

from the axis–symmetric impingement axis for different solid materials with water as the 

working fluid. The dimensionless temperature distribution plots reveal how the thermal 

conductivity affects the heat flux distribution. Constantan shows the lowest temperature 

at the impingement zone or stagnation point and the highest dimensionless temperature at 

the outlet in comparison with other solid materials. Copper and silver show a more 
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uniform distribution and higher temperature values at the impingement zone due to their 

higher thermal conductivity. The dimensionless temperature and local Nusselt number 

distributions of these two materials are almost identical due to their similar thermal 

conductivity values. The cross–over of curves for all five materials occurred due to a 

constant fluid flow and heat flux rate that reaches a thermal energy balance. A solid 

material with lower thermal conductivity shows higher maximum local Nusselt number.  
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Figure 6.10 Local Nusselt number and dimensionless interface temperature distributions 
for different plate to disk confinement ratio (Re=450, Ek=4.25x10–4, β=0.5, 
b/dn=0.5). 

 

Six different plate–to–disk confinement ratios (rp/rd) from 0.2 to 0.75 were 

modeled for water as the coolant and silicon as the disk material. The effects of plate–to–

disk confinement ratio on the dimensionless interface temperature and local Nusselt 

number are shown in figure 6.10. The dimensionless interface temperature increases with 

the increment of the plate–to–disk confinement ratio (rp/rd). This increment coincides 
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with the increment of liquid film thickness in the free jet region as seen in figure 6.2. 

Under the same spinning and flow rates, when rp is increased the higher frictional 

resistance from the confinement disk slows down the fluid momentum. In addition, a 

thinner film thickness for the same flow rate results in higher fluid velocity near the 

solid–fluid interface resulting in a higher rate of convective heat transfer. This is seen in 

the distribution of local Nusselt number which increases with the decrease of plate–to–

disk confinement ratio. 
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Figure 6.11 Comparison of predicted average Nusselt numbers of equation 6.1 with 
present numerical data. 

 

Figure 6.11 gives the comparison between the numerical average Nusselt numbers 

to average Nusselt numbers predicted by equation 6.1. A correlation for the average 

Nusselt number was developed as a function of confinement ratio, thermal conductivity 

ratio, and dimensionless nozzle to target spacing ratio, Ekman number, and Reynolds 
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number to accommodate most of the transport characteristics of a semi–confined liquid 

jet impingement cooling process. The correlation that best fitted the numerical data can 

be placed in the following form: 

Nuav=1.94282⋅β 
0.1 ⋅Re 0.75⋅Ek 

–0.1
 ⋅ε 

–0.7
 ⋅(rp / rd) 

–
 
0.05             (6.1) 

In developing this correlation, all average Nusselt number data corresponding to 

the variation of different parameters were used. Only data points corresponding to water 

as the fluid were used because the number of average heat transfer data for other fluids 

were small. The least square curve–fitting technique was used in developing this 

equation. The sign of the exponents was determined from the trend of variation of 

average Nusselt number with each parameter. In addition, the percent difference of the 

predicted average Nusselt number was defined as: % diff = ((Nuavpred – Nuavnum)/Nuavnum) 

×100. The average Nusselt number deviates in a range of –15.13% to +15.61% from the 

average numerical results predicted by equation 6.1. The mean deviation of the above 

correlation was equal to 6.94%. The ranges of the dimensionless variables in this study 

are: 360 ≤Re≤ 900, 1.06x10–4 ≤Ek≤4.25x10–4, 0.25 ≤β≤ 1, 0.2 ≤ rp / rd ≤ 0.75, Pr=5.49, 

227.6 ≤ε≤ 627.6. A large number of data points are well correlated with equation 6.1, as 

shown in figure 6.11. This correlation provides a convenient tool for the prediction of 

average heat transfer coefficient for a partially–confined liquid jet impingement on top of 

a spinning disk. 
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6.2 Steady State Cooling of Spinning Confined Wall and Target 

Figure 6.12 shows the variation of the dimensionless interface temperature and 

the local Nusselt number distributions for different Reynolds numbers under a rotational 

rate of 275 RPM (Ek1,2=1.93x10–4). 
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Figure 6.12 Effects of Reynolds number on local Nusselt number and dimensionless 
solid–fluid interface temperature variation for a silicon disk with water as 
the cooling fluid (β=0.5, b/dn=0.5, rp/rd=0.667, Ek1,2=1.93x10–4).  

 

The plots in figure 6.12 reveal that dimensionless interface temperature decreases with jet 

velocity (or Reynolds number). At any Reynolds number, the dimensionless interface 

temperature has the lowest value at the stagnation point (underneath the center of the 

axial opening) and increases radially downstream reaching the highest value at the end of 

the disk. At a Reynolds number of 220, the temperature becomes practically uniform 

after r/rd > 0.667. The thickness of the thermal boundary layer increases with radius and 

causes the interface temperature to increase. The increment of the dimensionless interface 
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temperature up to the end of its confinement coincides with the thickening of the thermal 

boundary layer. Afterward it becomes more uniform beneath the free surface. As noted in 

figure 6.2, there is a significant re–adjustment of fluid layer thickness as the flow comes 

out of the confinement and moves downstream with a free surface at the top. 

Figure 6.12 shows how the local Nusselt number distributions increases over a 

small distance (core region) measured from the stagnation point, reaching a maximum 

around r/rd=0.05, and then decreases along the radial distance as the boundary layer 

develops further downstream up to the end of the confined spinning plate or rp/rd≈0.667. 

After this location, the Nusselt number increases downstream and reaches a uniform 

value at larger radial locations of the disk. The location of the maximum Nusselt number 

can be associated with the transition of the flow from the vertical impingement to 

horizontal displacement where the boundary layer starts to develop. The increase of 

Nusselt number after the exit from the confinement is a result of significant decrease of 

film thickness that also decreases the thickness of the thermal boundary layer until it 

reaches a new equilibrium. It may be noticed that at low values of Reynolds number 

(Re=220 in particular), local Nusselt number remains almost constant over a good portion 

of the disk including a portion within the confinement region. This is because at low 

Reynolds number, the jet momentum dies down and the flow is driven by rotational 

motion of the disks. Figure 6.12 confirms to us how an increasing Reynolds number 

contributes to a more effective cooling. The observations are in–line with the previous 

studies by Garimella and Nenaydykh [77] and Saniei et al. [39].  

Figure 6.13 plots the average Nusselt number as a function of Reynolds number 

for low, intermediate, and high Ekman numbers of the solid disk. The spinning of the 
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confined plate was done at a constant rate of 125 RPM or Ek2=4.25x10–4. It may be noted 

that average Nusselt number increases with Reynolds number. As the flow rate (or 

Reynolds number) increases, the magnitude of fluid velocity near the solid–fluid interface 

that controls the convective heat transfer rate increases. Furthermore, at a particular 

Reynolds number, the Nusselt number gradually increases with the increment of disk 

spinning rate. This behavior confirms the positive influence of the rotational rate of the 

solid disk on the average Nusselt number down to Ek1=1.25x10–4 that corresponds to a 

spinning rate of 425 RPM.  

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000

Reynolds Number,Re  

A
v
e
ra
g
e 
N
u
ss
el
t 
N
u
m
b
e
r,
 N
u a
v

Ek=∞

 Ek=2.65x10-4

 Ek=9.46x10-5 

Ek=6.62x10-5

Ek1 = ∞

Ek1 = 4.25x10-4

Ek1 = 1.93x10-4

Ek1 = 1.25x10-4

 

Figure 6.13 Effects of Reynolds number on average Nusselt number at different Ekman 
numbers for a silicon disk with water as the cooling fluid (β=0.5, b/dn=0.5, 
rp/rd=0.667, Ek2=4.25x10–4).  

 

It may be also noticed that the average Nusselt number plots gets closer to each 

other as the Reynolds number increases indicating that curves will intersect at higher 

Reynolds numbers. These intersections indicate the presence of a liquid jet momentum 
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dominated region at higher Reynolds numbers. From the numerical results it was 

observed that the heat transfer is dominated by impingement when Re.Ek1> 0.113 and 

dominated by disk rotation when Re.Ek1< 0.09. In between there limits, both of these 

effects play an important role in determining the variation of average Nusselt number. 

This type of behavior is consistent with the experimental results of Brodersen et al. [39] 

where the ratio of jet and rotational Reynolds numbers was used to characterize the flow 

regime. 
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Figure 6.14 Effects of Ek1 variation on local Nusselt number and dimensionless 
interface temperature distributions for a silicon disk with water as the 
cooling f1uid (Re=540, β=0.5, b/dn=0.5, rp/rd=0.667, Ek2=4.25x10–4). 

 

The rotational rate effects of the solid disk under the influence of a constant 

spinning rate of the confinement plate on the local Nusselt number and dimensionless 

interface temperature are illustrated in figure 6.14 for a Reynolds number of 540 and 
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dimensionless nozzle–to–plate spacing (β) equal to 0.5. It may be noted that the local 

Nusselt number remains the same over the distance 0 <r/rd< 0.35 and increases with 

rotational rate (decreases with Ekman number) further downstream. This is because the 

flow is highly dominated by jet inlet momentum at r/rd< 0.35, and the centrifugal forces 

generated by rotation of the disks can influence the transport only at r/rd> 0.35. It may 

also be noted that a higher rotational rate provides a lesser amount of undershoot in 

Nusselt number and a higher equilibrium value at large disk radii. Figure 6.14 shows that 

dimensionless interface temperature decreases with the increment of the rotational rate in 

comparison with the stationary case due to the enhancement of local fluid velocity 

adjacent to the disk. The local Nusselt number increases by an average of 33.78% in 

figure 6.14; as the Ekman number of solid spinning disk decreases from ∞ to 7.08x10–5 

under the influence of a constant spinning rate of 125 RPM (Ek2=4.25x10–4) of the top 

confinement disk. The dimensionless interface temperature decreases by an average of 

10.85% in figure 6.14 under a Reynolds number of 540. The enhancement of Nusselt 

number due to rotation is primarily caused by enhancement of local fluid velocity 

adjacent to the rotating disk surface. The tangential velocity due to rotation combined 

with axial and radial velocities due to jet momentum increases the magnitude of the 

velocity vector. 

Figure 6.15 shows the rotational rate effects of the top confinement disk in 

conjunction with a constant spinning rate of the solid impingement disk on local Nusselt 

number and dimensionless interface temperature distributions for a Reynolds number of 

540 and dimensionless nozzle–to–plate spacing (β) equal to 0.5. It may be noted that 

rotational effect up to a spinning rate of 375 RPM or (Ek2=1.42x10–4) increases the local 
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Nusselt number and generates lower temperature over the entire solid–fluid interface with 

less intensity in comparison with the Reynolds number effect shown in figure 6.12 and 

the solid disk rotational rate effect under a constant spinning of the confinement plate 

shown in figure 6.14.  
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Figure 6.15 Effects of Ek2 variation on local Nusselt number and dimensionless 
interface temperature distributions for a silicon disk with water as the 
cooling f1uid (Re=540, β=0.5, b/dn=0.5, rp/rd=0.667, Ek1=4.25x10–4). 

 

Figure 6.15 shows that dimensionless interface temperature decreases with the 

increment of the rotational rate up to a spinning rate of 375 RPM (Ek2=1.42x10–4) in 

comparison with the stationary case due to the enhancement of local fluid velocity 

adjacent to the disk. The local Nusselt number increases by an average of 5.92% and the 

dimensionless interface temperature decreases by an average of 0.40% in figure 6.15; as 

the Ekman number of the top confined plate decreases from ∞ to 1.42x10–4 under the 

influence of a constant spinning rate of 125 RPM (Ek1=4.25x10–4) of the solid 
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impingement disk. However, exceptions occur for spinning rates of 500 and 750 RPM 

(Ek2=1.06x10–4 and 7.08x10–5) where higher values for dimensionless interface 

temperature and lower values for Nusselt number are found for the most part of the solid–

fluid interface. In these particular cases, the rotation generates a negative effect within the 

confined region. At these high rotational rates of the top disk (4 and 6 times compared to 

the bottom disk) the thermal boundary layer structure at the heated bottom disk tends to 

get swept away by the strong rotational motion of the top disk. Therefore a lower Nusselt 

number is achieved compared to other cases in the confined region. However, when the 

flow gets out of the confinement at (r/rd=0.667), the added momentum exerted by the top 

disk results in rise of heat transfer coefficient from this point all the way to the end of the 

disk. Therefore, the proper selection of two spinning rates is crucial in a design process. 

This type of behavior is consistent with the observations of Popiel and Boguslawski [36].  

The effects of disk thickness variation on the dimensionless interface temperature 

and local Nusselt number are shown in figure 6.16. In these plots, silicon has been used 

as the disk material and water as the cooling fluid for Reynolds number of 450 and 

spinning rate of 125 RPM (Ek1,2=4.25x10–4 ). The dimensionless interface temperature 

increases from the impingement region all the way to the end of the disk. It may be noted 

that the disk thickness variation curves from the 0.25 to 1.67 intersect with each other at a 

dimensionless radial distance of r/rd=0.55. The thicker disks generate more uniform 

dimensionless interface temperature due to a larger radial conduction within the disk. 
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Figure 6.16 Effects of thickness variation on local Nusselt number and dimensionless 
interface temperature distributions for a silicon disk with water as the 
cooling f1uid (Re=450, β=0.5, Ek1,2=4.25x10–4, rp/rd=0.667). 

 

Since the flow rate and heat input at the bottom of the disk are kept constant, the 

global energy balance dictates that average interface temperature changes only slightly as 

the thermal resistance offered by the disk changes with the variation of disk thickness. It 

may be observed from figure 6.16 that average interface temperature slightly increases 

with the increment of disk thickness. The local distribution of interface temperature is 

primarily controlled by the re–distribution of input heat within the solid. A thinner plate 

offers a smaller opportunity for heat flux re–distribution and therefore a larger variation 

controlled by convection and local fluid temperature is seen. For a thicker plate, more 

opportunity for radial conduction results in higher interface heat flux in the impingement 

region where the fluid is cooler and gradually smaller interface heat flux as the fluid 

moves downstream. This results in more uniform interface temperature as shown in 
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figure 6.16. The combined effects only slight change in average interface temperature 

whereas large change in local distribution with the variation of thickness results in plots 

intersecting each other in figure 6.16. Local Nusselt number plots in figure 6.16 change 

slightly with the variation of disk thickness. In all cases, it is evident that the Nusselt 

number is sensitive to the solid thickness especially at the core region where higher 

Nusselt number values are obtained. It may be noted that local Nusselt number was 

calculated by using local temperature and local heat flux at the interface, both of which 

became larger in the impingement region with increase of disk thickness. Therefore the 

net effect was almost same Nusselt number distribution for all the thicknesses. This 

phenomenon has also been documented by Lachefski et al. [54] for jet impingement on a 

stationary disk.  

Four different nozzle to target spacing ratio (β) from 0.25 to 1 were modeled 

using water as the coolant and silicon as the disk material. The effects of nozzle to target 

spacing on local Nusselt number and dimensionless interface temperature at a spinning 

rate of 125 RPM (Ek1,2=4.25x10 –4) and Reynolds number of 900 are shown in figure 

6.17. It may be noticed that the impingement height quite significantly affects the Nusselt 

number distribution particularly at the stagnation region. A higher local Nusselt number 

at the core region is obtained when the nozzle is brought close to the heated disk 

(β=0.25). 
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Figure 6.17 Effects of nozzle to target spacing ratio on local Nusselt number and 
dimensionless interface temperature distributions for a silicon disk with 
water as the cooling fluid (Re=900, b/dn=0.5, Ek1,2=4.25x10–4, rp/rd=0.667). 

 

A lower distance between nozzle and impingement plate provides lower loss of 

momentum as the jet travels for a shorter distance through the surrounding liquid 

medium. In addition, a smaller gap provides quicker propagation of centrifugal force 

from the spinning disks into the fluid medium increasing the net transport rate. It may be 

also noticed that in figure 6.17, curves for β=0.25–0.75 are close together whereas, at 

β=1, a higher temperature is obtained all along the disk. In figure 6b, it can be noticed 

that minimum in Nusselt number moves downstream with increase in gap and no 

minimum is observed at β=1. Therefore, rotational effects cannot propagate well when 

the gap between impingement and confinement plates is large. The local maximum is 

associated with the transition of flow structure from vertical stagnation flow to horizontal 
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boundary layer flow adjacent to the heated disk. The Nusselt number is maximum at the 

start of the thermal boundary layer. The minimum is associated with the transition from 

jet momentum dominated flow to rotation dominated flow. As the fluid moves 

downstream, boundary layer grows in thickness and jet momentum diminishes. On the 

other hand, the centrifugal force generated by disk rotation increases as the fluid moves 

to a larger radial location. The balance of these simultaneous effects results in the 

minimum in local Nusselt number. As both disks are rotating, a smaller vertical gap 

between disks causes a stronger propagation of rotational effects to the fluid and 

therefore earlier transition from momentum dominated to rotation dominated flow. 

Figure 6.18 compares the dimensionless interface temperature results of the 

present working fluid (water) with three other coolants that have been considered in 

previous heat transfer studies, namely ammonia (NH3), flouroinert (FC–77) and oil 

(MIL–7808) under a Reynolds number of 750. Even though the rotational rate (Ω1,2) for 

the impinging solid disk and confinement plate was set at 350 RPM the variation of 

Ekman number occurred since the density (ρ) and dynamic viscosity (µ) are different for 

each fluid. It may be noticed that MIL–7808 presents the highest dimensionless interface 

temperature and ammonia has the lowest value. Ammonia shows the most uniform 

distribution of temperature along the radius of the disk.  
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Figure 6.18 Effects of different cooling fluids with silicon as the disk material on local 
Nusselt number and dimensionless interface temperature (Re=750, β=0.5, 
b/dn=0.5, rp/rd=0.667). 

 

Figure 6.18 shows the corresponding local Nusselt number distributions. It may 

be noticed that MIL–7808 presents the highest local Nusselt number values over the 

entire dimensionless radial distance. Ammonia on the other hand provides the lowest 

Nusselt number. The Nusselt number trend is well correlated with the variation of Prandtl 

number. A higher Prandtl number fluid leads to a thinner thermal boundary layer and 

therefore more effective heat removal rate at the interface. The present working fluid 

results are in agreement with Li et al. [80] and Ma et al. [81] findings where a larger 

Prandtl number corresponded to a higher recovery factor.  
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Figure 6.19 Effects of different solid materials with water as the cooling fluid on local 
Nusselt number and dimensionless interface temperature (Re=875, 
Ek1,2=1.77x10–4, β=0.5, b/dn=0.5, and rp/rd=0.667). 

 

Figure 6.19 shows the dimensionless interface temperature and local Nusselt 

number distribution plots as a function of dimensionless radial distance (r/rd) measured 

from the axis–symmetric impingement axis for different solid materials with water as the 

working fluid. The studied materials were aluminum, Constantan, copper, silicon, and 

silver having different thermo–physical properties. The dimensionless temperature 

distribution plots reveal how the thermal conductivity affects the heat flux distribution. 

Constantan shows the lowest temperature at the impingement zone or stagnation point 

and the highest dimensionless temperature at the outlet in comparison with other solid 

materials. Copper and silver show a more uniform distribution and higher temperature 

values at the impingement zone due to their higher thermal conductivity. The 

dimensionless temperature and local Nusselt number distributions of these two materials 
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are almost identical due to their similar thermal conductivity values. The cross–over of 

curves for all five materials occurred around r/rd≈0.525. This cross–over is expected 

because of thermal energy balance for constant fluid flow and heat input rates. A solid 

material with a lower thermal conductivity (Constantan) shows a higher maximum local 

Nusselt number. For all solid materials, the local Nusselt number distribution increases 

rapidly over a small distance (core region) measured from the stagnation point, reaches a 

maximum around r/rd=0.50, and then decreases along the radial distance up to rp/rd≈0.63. 

Further downstream when the film encounters a free surface at the top along with the 

rotation of the solid disk at the bottom, the local Nusselt values for all materials gradually 

increase due to the increment of the tangential velocity and thinner thermal boundary 

layer that enhances the heat transfer on the solid disk surface. 

Six different plate–to–disk confinement ratios (rp/rd) from 0.2 to 0.75 were 

modeled using water as the coolant and silicon as the disk material. The effects of plate–

to–disk confinement ratio on the dimensionless interface temperature and local Nusselt 

number at a spinning rate of 125 RPM or Ek1,2=4.25x10–4 and Reynolds number of 450 

are shown in figure 6.20. The plots in figure 6.20 reveal that the dimensionless interface 

temperature increases with the increment of the plate–to–disk confinement ratio (rp/rd). 

This increment coincides with the increment of liquid film thickness in the free jet region 

seen in figure 6.2. A thinner film thickness for the same flow rate results in higher fluid 

velocity near the solid–fluid interface resulting in a higher rate of convective heat 

transfer. This is seen in the distribution of local Nusselt number plotted in figure 6.20. 

The local Nusselt number increases with the decrease of plate–to–disk confinement ratio.  
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Figure 6.20 Local Nusselt number and dimensionless interface temperature distributions 
for different plate to disk confinement ratio (Re=450, Ek1,2=4.25x10–4, 
β=0.5, b/dn=0.5). 

 

A correlation for the average Nusselt number was developed as a function of 

confinement ratio, thermal conductivity ratio, dimensionless nozzle to target spacing, 

Ekman number, Reynolds number, and confinement plate to disk radius ratio to 

accommodate most of the transport characteristics of a semi–confined liquid jet 

impingement cooling process. The correlation that best fitted the numerical data can be 

placed in the following form: 

Nuav=1.94282⋅β−0.01 ⋅Re 0.75⋅Ek1
 –0.0465 Ek2

 –0.047 ⋅ε – 0.69 ⋅(rp / rd)
 – 0.05            (6.2) 

In developing this correlation, all average Nusselt number data corresponding to 

the variation of different parameters were used. Only data points corresponding to water 

as the fluid were used because the number of average heat transfer data for other fluids 
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were small. Also data points corresponding to both disks rotating at the same rate were 

used.  
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Figure 6.21 Comparison of predicted average Nusselt numbers of equation 6.2 with 
present numerical data. 

 

Figure 6.21 gives the comparison between the numerical average Nusselt numbers 

to average Nusselt numbers predicted by equation 6.2. The percent difference of the 

predicted average Nusselt number was defined as: % diff = ((Nuavpred – Nuavnum)/Nuavnum) 

×100. The predicted average Nusselt number values from equation 6.2 deviates in a range 

of –14.76% to +13.08% from the actual numerical results obtained in present dissertation 

study. The mean deviation of the predicted average Nusselt results was equal to 6.37%. 

The ranges of the dimensionless variables in this study are: 360 ≤Re≤ 900, 4.25x10–4 

≤Ek1≤ 7.08x10–5, 4.25x10–4 ≤Ek2≤ 7.08x10–5, 0.25 ≤β≤ 1, 0.2 ≤rp/rd≤ 0.75, Pr=5.49, 

227.6 ≤ε≤ 627.6. It should be noted from figure 6.21 that a large number of data points 
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are well correlated with equation 6.2. This correlation can be a convenient tool for the 

prediction of average heat transfer coefficient. 

0

40

80

120

160

200

240

280

320

360

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Dimensionless Radial Location, r/rd

L
o
c
a
l 
N
u
ss
e
lt
 N
u
m
b
er
, 
N
u

  50 rpm

100 rpm

200 rpm

Ozar et al.[44,45], 50rpm

Ozar et al.[44,45], 100rpm

Ozar et al.[44,45], 200rpm

Rice et al.[46], 50rpm

Rice et al.[46], 100rpm

 

Figure 6.22 Comparison of numerical and experimental local Nusselt number 
distributions at different spinning rates for an aluminum disk with water as 
the cooling fluid (Tj=293 K, Re=238, Hn=0.000254 m, b=0.00635 m, 
b/dn=0.125, rp=0.0508 m, and rp/rd=0.25). 

 

Figure 6.22 shows a comparison of local Nusselt numbers obtained in present 

numerical simulation with the experimental data obtained by Ozar et al. [44, 45] and 

numerical results of Rice et al. [46] at various rotational speeds. A rotating disk with a 

heat flux of 32kW/m2, cooled by a round single water jet impingement at a flow rate of 3 

liter/min (Re=238) and spinning at speeds of 50, 100, 200 RPM were compared. The 

computation was conducted for jet temperature (Tj) of 293 K; the nozzle to target spacing 

was set to 0.00254 m, with a nozzle diameter of 0.0508 m and for collar (or confinement) 

that extended over a radial distance of 0.051 m. The spinning disk had a diameter of 
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0.4064 m and thickness of 0.00635 m. The disk was made of aluminum, a material with a 

thermal conductivity of 202.4 W/mK. As seen in figure 6.22, the agreement of the local 

Nusselt number results of Ozar et al. [44, 45] and Rice et al. [46] with the present 

numerical simulation is satisfactory. In those studies higher Nusselt numbers were found 

at the inner portions of the disk, close to the collar, and decreased towards the outer edge. 

This was due to the radial spread of the flow, and lower convective heat transfer removal 

of the liquid due to a more pronounced backflow effect on the upper confinement plate at 

a large ratio of confinement, including the sluggish development of the thermal boundary 

layer thickness. The same behavior was observed as part of our numerical study just with 

a slight cutback effect on local Nusselt number distributions at large ratios of 

confinement. The percent difference of present local Nusselt number results was defined 

as: % diff = ((Nunum – Nuexp)/Nuexp) ×100. The difference in local Nusselt number between 

Ozar et al. [44, 45] and the present simulation is in the range of –18.55% to 22.07% with 

an average difference of 12.33%. The difference in local Nusselt number between Rice et 

al. [46] and the present simulation falls in the range of –22.08% to –5.01% with an 

average difference of 14.9%. The Nusselt number at the stagnation region was compared 

with the stagnation Nusselt number correlation developed by Liu et al. [17] for liquid jet 

impingement over a stationary disk. For the Reynolds number and rotational rates 

considered in our study, the average difference was 13.14%. The rotation always 

enhances the stagnation Nusselt number compared to the stationary disk.  

6.3 Transient Cooling of Spinning Target 

Figure 6.23 shows the local Nusselt number and the dimensionless interface 

temperature variation for different time instants. It can be observed that at the earlier part 
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of the transient heat transfer process, the solid–fluid interface maintains a more uniform 

temperature. The difference of dimensionless maximum and minimum temperature at the 

solid–fluid interface increases from 0.016 at Fo=0.051 to 0.05 when the steady state 

condition reached at Fo=0.369. After the power is turned on, the heat is first absorbed by 

the solid as it is transmitted through the solid and dissipated to the fluid. At the solid–

fluid interface, the fluid absorbs heat and carries it as it moves downstream. At the start 

of the transient, the thickness of the thermal boundary layer is zero. As time goes on, the 

thickness of the thermal boundary layer increases and therefore the temperature rises. The 

interface temperature responds to the boundary layer thickness that increases 

downstream. Therefore, the temperature becomes minimum at the impinging point and 

maximum at the outer edge of the spinning disk.  
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Figure 6.23 Local Nusselt number and dimensionless interface temperature distributions 
for a silicon disk with water as the cooling fluid for different Fourier 
numbers (Re=275, Ek=4.25x10–4, β=0.5, b/dn=0.5, rp/rd=0.667). 
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The local Nusselt number is controlled by local temperature and heat flux at the 

solid–fluid interface. It shows a higher value at early stages of the transient process due to 

smaller temperature difference between the liquid jet and disk solid–fluid interface. This 

essentially means that all heat reaching the solid–fluid interface via conduction through 

the solid is more efficiently convected out as the local fluid temperature is low 

everywhere at the interface. The local Nusselt number is maximum at the center of the 

disk, and decreases along the radial distance as the boundary layer thickness increases 

downstream. The local Nusselt number decreases with time until it reaches the steady 

state equilibrium distribution.  
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Figure 6.24 Average Nusselt number and dimensionless temperature variations with 
time for different Reynolds numbers (Ek=4.25x10–4, β=0.5, silicon disk, 
b/dn=0.5, and rp/rd=0.667). 

 

The integrated average Nusselt number and the variation of dimensionless 

maximum temperature at the interface, maximum temperature inside the solid and 
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maximum–to–minimum temperature difference at the interface for different Fourier 

numbers at different values of Reynolds number are shown in figure 6.24. The average 

Nusselt number is large at the early part of the transient and monotonically decreases 

with time ultimately reaching the value for the steady state condition.  

A higher Reynolds number increases the magnitude of fluid velocity near the 

solid–fluid interface that controls the convective heat transfer and therefore increases the 

average Nusselt number. The control of maximum temperature is important in many 

critical thermal management applications including electronic packaging. As expected, 

the temperature increases everywhere with time starting from the initial isothermal 

condition. A rapid increment is seen at the earlier part of the transient, and it levels off as 

the thermal storage capacity of the solid diminishes and become zero at the steady state 

condition. It maybe noted that the time required to reach the steady state condition is 

lower at a higher Reynolds number because the higher velocity of the fluid helps to 

enhance the convective heat transfer process. This is due to quicker dissipation of heat 

with higher flow rate. The steady state Fourier number (Foss) was defined as the time 

needed to approach 99.99% of the steady state local Nusselt number over the entire 

solid–fluid interface. It was found that Foss decreases from 0.369 at Re=275 to 0.195 at 

Re=900. 

Figure 6.25 provides the variations of average Nusselt number and the 

dimensionless maximum temperature at the interface, maximum temperature inside the 

solid, and maximum–to–minimum temperature difference at the interface with the 

progression of time at different Ekman numbers. The average Nusselt number is large at 

the early part of the transient and monotonically decreases with time ultimately reaching 
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the value for the steady state condition. Throughout the transient heating process, the 

average Nusselt number is more at larger spinning rate or smaller Ekman number. 
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Figure 6.25 Average Nusselt number and dimensionless temperature variations with 
time for different Ekman numbers (Re=550, β=0.25, silicon disk, b/dn=0.5, 
and rp/rd=0.667). 

 

As the Ekman number decreases from ∞ to 7.08x10–5 the average Nusselt number 

increases by an average of 27.47% when the Reynolds number is kept constant at 550. 

The maximum temperature within the solid was encountered at the outlet adjacent to the 

heated surface (z= –b, r=rd). The temperatures rise with time as the solid disk and the 

fluid store heat showing a rapid response at the earlier part of the heating process until the 

thermal storage capacity reaches its limit at the steady state condition. It may be noted 

that the magnitude of the dimensionless temperature as well as the time required to reach 

the steady state condition become smaller as the Ekman number decreases. This is 

because the magnitude of fluid velocity near the solid–fluid interface that controls the 
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convective heat transfer rate increases with the increment of the rotational rate of the disk 

or the reduction of Ekman number. These observations are in agreement with the 

numerical solutions of Rice et al. [46].  

The effects of nozzle to target spacing for water as the coolant and silicon as the 

disk material at a spinning rate of 125 RPM or Ek=4.25x10–4 and Reynolds number of 

750 is demonstrated in figure 6.26. It may be noticed that a higher average Nusselt 

number and a smaller maximum temperature are obtained over the entire transient 

process when the nozzle is brought closer to the heated disk.  
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Figure 6.26 Average Nusselt number and dimensionless temperature variations with 
time for different nozzle–to–plate spacing (Re=750, Ek=4.25x10–4, silicon 
disk, b/dn=0.5, and rp/rd=0.667). 

 

The smaller gap between the nozzle and the target disk avoids the loss of momentum as 

the fluids travels through the confined medium. This results in a larger rate of convective 

heat transfer with higher fluid velocity. As the nozzle to target spacing decreases from 1 
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to 0.25 the average Nusselt number increases by an average of 12.71% when the 

Reynolds number is kept at 750.  

Different plate–to–disk confinement ratios (rp/rd) from 0.2 to 0.75 were 

investigated for water as the coolant and silicon as the disk material. The effects of plate–

to–disk confinement ratio on the variation of dimensionless maximum temperature at the 

interface, maximum temperature inside the solid, and maximum–to–minimum 

dimensionless temperature difference at the interface and average Nusselt number are 

shown in figure 6.27.  
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Figure 6.27 Average Nusselt number and dimensionless temperature variations with 
time for different plate to disk confinement ratios (Re=450, Ek=4.25x10–4, 
β=0.5, silicon disk, b/dn=0.5). 

 

The average Nusselt number increases with the reduction of the plate–to–disk 

confinement ratio. When rp is increased, the frictional resistance from both walls slows 

down the momentum and results in higher film thickness at the free surface region for 
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any given spin rate and flow rate. A lower fluid velocity obviously results in smaller 

convective heat transfer rate. As the plate–to–disk confinement ratio decreases from 0.75 

to 0.2, the average Nusselt number increases by an average of 18.07% when the Reynolds 

and Ekman numbers are kept constant at 450 and 4.25x10–4 respectively. When the ratio 

of confinement was reduced from 0.75 to 0.25, under the same numerical conditions like 

flow and spinning rates, it was found that the maximum temperature inside the solid 

decreases by 8.96%. 

The effects of solid material properties on transient heat transfer are presented in 

figure 6.28. The studied materials were aluminum, Constantan, copper, silicon, and silver 

having different thermo–physical properties.  
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Figure 6.28 Average Nusselt number and dimensionless temperature variations with 
time for different solid materials (Re=875, Ek=2.13x10–4, b/dn=0.5, β=0.5, 
and rp/rd= 0.667). 
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For all materials the temperature changes occur faster at the earlier part of the 

heating process and the slope gradually decays when the steady state conditions 

approaches. It can be observed that a material having a lower thermal conductivity such 

as Constantan maintains a higher temperature at the solid disk interface and within the 

solid as the thermal conductivity controls how effectively the heat flows and distributes 

through the material. For the same reason, the maximum temperature within the solid and 

that at the interface are significantly different for Constantan, whereareas about the same 

for both silver and aluminum. The thermal diffusivity of the material also contributes to 

the transient heat transfer process. Silver and aluminum reach the steady state faster than 

Constantan due to their higher thermal diffusivity. The values of thermal diffusivity for 

these materials at 303 K are αsilver=1.74 x10–4 m2/s, αaluminum=8.33 x10–5 m2/s, and 

αConstantan=6.20x10–6 m2/s.The magnitude of the temperature non–uniformity at the 

interface at steady state is controlled by thermal conductivity of the material. It may be 

noted that Constantan (kConstantan=22.7 W/m.K) has an average maximum–to–minimum 

temperature difference of 17.24 K, whereareas silver (ksilver=429 W/m.K) has only an 

average 3.34 K temperature difference at the interface. Figure 6.28 also shows the 

distribution of average Nusselt number with time for the five materials used in this study. 

Constantan shows a higher average heat transfer coefficient compared to the other 

materials over the entire transient process due to its lower thermal conductivity.  

Another important factor that controls the transient heat transfer process is the 

thickness of the disk. Its effects on the variation of the dimensionless maximum 

temperature at the interface, maximum temperature inside the solid, and maximum–to–

minimum dimensionless temperature difference at the interface and average Nusselt 
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number are shown in figure 6.29. In these plots, silicon has been used as the disk material 

and water as the cooling fluid. The disk thickness significantly affects the temperature 

distribution. It may be noted that as the thickness of solid disk increases, the time needed 

to achieve the steady state condition increases. This is due to more storage capacity of 

heat within the solid. The radial conduction becomes stronger as the disk thickness 

increases generating a more uniform heat distribution at the interface. However, the 

increment of solid thickness creates more thermal resistance to the heat transfer process. 

The average Nusselt number is higher for a thinner disk.  

0

3

6

9

12

15

18

21

24

27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fourier Number, Fo  

A
v
er
a
g
e 
N
u
ss
e
lt
 N
u
m
b
er
, 
N
u a
v

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
im
e
n
si
o
n
le
ss
 T
em
p
er
a
tu
re
, ΘΘ ΘΘ

Ek=∞

 Ek=2.65x10-4

 Ek=9.46x10-5 

Series4

Series5

Series6

Series7

Series10

Series8

Series9

b/dn = 0.25

b/dn = 0.50

b/dn =0.83

b/dn =1.67

Θmax(int), b/dn = 0.25

Θmax(int), b/dn = 1.67

Θmax(solid), b/dn = 0.25

Θmax(solid), b/dn = 1.67

Θmax - Θmin(int), b/dn = 0.25

Θmax - Θmin(int),b/dn = 1.67

 

Figure 6.29 Average Nusselt number and dimensionless temperature variations with 
time for different silicon disk thicknesses (Re=450, Ek=4.25x10–4, β=0.5, 
and rp/rd=0.667).  

 

Based on our numerical data, a correlation for the average Nusselt number was 

developed as a function of confinement ratio, thermal conductivity ratio, dimensionless 

disk thickness, nozzle to target spacing, Ekman number, Reynolds number, and Fourier 
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number to accommodate most of the transport characteristics of a transient partially–

confined liquid jet impingement cooling process on a thick solid disk spinning at a 

constant angular velocity. The correlation that best fitted the data can be placed in the 

following form: 

Nuav=1.94282⋅β −0.01 ⋅Re0.74 ⋅Ek – 0.1 ⋅ε– 0.7 ⋅(b/dn)
−0.05 ⋅(rp/rd)

−0.05 ⋅Fo−0.01           (6.3) 

In developing this correlation, all average Nusselt number data corresponding to 

the variation of different parameters were used. The least squares curve fitting method 

was used. Figure 6.30 gives a graphical comparison between the numerical average 

Nusselt numbers to the average Nusselt numbers predicted by equation 6.3.  
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Figure 6.30 Comparison of predicted average Nusselt number of equation 6.3 with 
present numerical data. 

 

The percent difference of the predicted average Nusselt number was defined as: 

%diff = ((Nuavpred – Nuavnum)/Nuavnum) ×100. The predicted average Nusselt number 
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differences between numerical and predicted values are in the range of –9.21% to 

+13.61%. The average Nusselt correlation mean difference was equal to 4.98%. The 

values of the dimensionless variables used for this correlation are: 225 ≤Re≤ 900, 

7.08x10–5 ≤Ek≤ 4.25x10–4, 0.25 ≤β≤ 1.0, Pr=5.49, 227.6 ≤ε≤ 376.7, 0.25 ≤b/dn≤ 1.67, 0.2 

≤rp/rd≤ 0.75, and 0.045 ≤Fo≤ 0.72. It should be noted from figure 6.30 that a large 

number of data points are well correlated with equation 6.3. This correlation provides a 

convenient tool for the prediction of average heat transfer coefficient during the transient 

heat transfer process. 

A comparison of the present numerical results with the experimental data of Ozar 

et al. [44, 45] for various spinning rates of the target disk is presented in Table 6.1. To 

match with the experimental conditions, the combination of the parameters used was: 

qw=32 kW/m2, Re=238, Tj=293 K, Hn=0.00254 m, dn=0.0508 m, rp=0.051 m, rd=0.2032 

m and b=0.00635 m. Water was used as the working fluid. The disk was made of 

aluminum, a material with a thermal conductivity of 202.4 W/mK. The local percent 

difference of present numerical Nusselt number results of Table 6.1 was defined in term 

of: % diff = ((Nunum – Nuexp)/Nuexp) ×100. As seen in Table 6.1, the differences in the 

value of local Nusselt number results were in the range of –14.14% to 4.34% with an 

average difference of 6.91%. 

In Ozar’s research [44, 45] higher Nusselt numbers were found at the inner 

portions of the disk, close to the collar, and decreased towards the outer edge. This was 

due to the radial spread of the flow, and lower convective heat transfer removal of the 

liquid due to a more pronounced backflow effect on the upper confinement plate at a 

large ratio of confinement, including the sluggish development of the thermal boundary 
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layer thickness. The same behavior was observed as part of our numerical study just with 

a slight cutback effect on local Nusselt number distributions at large ratios of 

confinement. Considering the uncertainty of experimental measurements and round off 

and discretization errors in numerical computation, the overall comparison between test 

data and numerical results can be considered to be quite satisfactory.  

Table 6.1 Local Nusselt number comparison between experimental data of Ozar et al. 
[44, 45] and present numerical results (Tj=293 K, qw=32 kw/m2, b=0.00635 
m, Re=238, Hn=0.000254 m, rp/rd=0.25, b/dn=0.125, rhin=rp=0.0508 m). 

 

Confinement  Spinning rate, 50 RPM Percent 

ratio, r/rhin Numerical Experimental difference 

1.8 193.40 185 4.34 

2.15 166.56 175 –5.07 

2.7 135.80 155 –14.14 

 Spinning rate, 100 RPM  

 Numerical Experimental  

1.8 217.58 215 1.19 

2.15 197.39 205 –6.39 

2.7 152.78 169 –10.62 

 Spinning rate, 200 RPM  

 Numerical Experimental  

1.8 261.09 260 0.42 

2.15 224.86 249 –10.73 

2.7 183.33 205 –11.82 

  Average 6.91 
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Chapter 7 Chemical Mechanical Polishing Model Results 

 

 

7.1 Steady State Process 

A three dimensional steady state FEM model was used to acquire the temperature 

profile of the substrate and pad surfaces during a CMP process. Figure 7.1a shows the 

steady state maximum and minimum temperature contour distributions for the control 

volume under a slurry flow rate of Qsl=15 cc/min. It can be seen from figure 7.1a that a 

considerable region of the trailing edge along the 2, 3, and 4 o’clock positions reaches up 

to a temperature difference of 6 degrees at the wafer and pad surfaces, including the 

slurry region. A second numerical run with the same polishing conditions except for the 

amount of slurry flow rate of (Qsl=30 cc/min) are shown in figure 7.1b. Figure 7.1b 

shows a temperature difference of 4.5 degrees that extends along the trailing edge from 

the 2 to 4 o’clock positions at the wafer and pad surfaces along the slurry interface.  

Figure 7.1c illustrates the same pattern as figures 7.1a and 7.1b with a temperature 

difference slightly smaller, around 4 degrees, at few areas of the trailing edge, along the 

2, 3, and 4 o’clock positions at the wafer and pad surfaces as well as the slurry region. 

The steady state temperature contour plots of figure 7.1 were done for an abrasive film 

thickness of 40 µm, under a constant pressure load of P=24.35 kPa, and coefficient of 

friction (µfr =0.4), with a variable heat flux that ranges from 3.6 to 8.3 (kW/m2), under a 

pad and carrier spinning rate of 120 and 30 RPM respectively. 
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(a) 

 

(b) 

 

(c) 
 

Figure 7.1 Steady state temperature contour plots for alumina (slurry), the substrate 
and pad surfaces at various slurry flow rates, (a) Qsl=15 cc/min, (b) Qsl=30 
cc/min, and (c) Qsl=75 cc/min. 



www.manaraa.com

 194 

20

35

50

65

80

95

110

125

140

155

170

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Dimensionless radial location, r/rw 

H
ea

t 
tr

an
sf

er
 c

on
ve

ct
io

n 
co

ef
f.

, h
 (

w
/m

2 K
)

297

298

299

300

301

302

303

S
ur

fa
ce

 T
em

pe
ra

tu
re

, T
 (

K
)

w15

w75

p15

p75

Tw15

Tw75

Tp15

Tp75

Leading Edge

Trailing Edge

hw, Qsl=30 cc/min
hw, Qsl=75 cc/min
hp, Qsl=30 cc/min
hp, Qsl=75 cc/min
Tw, Qsl=30 cc/min
Tw, Qsl=75 cc/min
Tp, Qsl=30 cc/min
Tp, Qsl=75 cc/min

 

Figure 7.2 Cross–sectional wafer and pad temperature distributions and local heat 
transfer convection coefficients along the center of pad and substrate 
surfaces for two different slurry flow rates. 

 

Figure 7.2 shows the cross–sectional wafer and pad surfaces temperature 

distributions and the local heat transfer convection coefficients along the dimensional 

radial distance from the leading to the end of the trailing edge of the control volume 

under study, for two characteristic slurry flow rates under the same polishing conditions 

described in figures 7.1. The substrate and pad temperature distributions for a higher 

slurry flow rate are slightly smaller compared to the lower slurry flow rate results in 

figure 7.2. The temperature difference can be seen at a wafer dimensionless radial 

distance around r/rw=0.7 towards the end of its trailing edge, where the temperature of the 

pad and wafer drops and then increases significantly, due to the backflow effect of the 

slurry observed by Muldowney [147]. A backflow effect is linked to the rotational motion 
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of the slurry and the shear effect of frictional forces due to the surface tension of the 

slurry particles along such a small gap. 

The heat transfer convection coefficients for wafer and pad surfaces follow a 

higher profile pattern that stars at the leading edge and decreases along the radial distance 

up to the trailing edge of both surfaces. The wafer heat transfer convection coefficient 

values range from 130 to 24 (W/m2K). The average values of the heat transfer convection 

coefficient for the wafer along the surface were approximately equal to 43.64 and 44.11 

(W/m2K) under lower and higher flow rate conditions. The pad heat transfer convection 

coefficient values range from 170 to 30 (W/m2K). The average values of the heat transfer 

convection coefficient for the pad along the surface were approximately equal to 51.25 

and 51.95(W/m2K) under lower and higher flow rate conditions. The temperature contour 

plots in figure 7.1 and radial surface temperature distributions of figure 7.2 reveal that the 

wafer and pad temperature profile decreased by a slightly margin with the increment of 

the slurry velocity. In addition, the figures reveal that the heat transfer convection 

coefficients are higher at the pad surface than the substrate surface, which is due to its 

lower thermal conductivity that results in a lower temperature gradient between the 

incoming slurry and pad surface. This effect results in higher convective coefficients for 

the pad by an average margin of 17.21% under lower and higher slurry rates. Present 

numerical results are in agreement with Sampurno et al. [121]. 

Figure 7.3 shows the cross–sectional wafer and pad temperature rise and the local 

heat transfer convection coefficient distributions along the dimensional radial distance 

from the leading to end of the trailing edge of the substrate and pad surfaces for two 

characteristic pressure loads of 17.24 kPa (2.5psi) and 41.37 kPa (6psi) respectively. The 
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steady state temperature results were done for an abrasive film of alumina through a film 

thickness of 40 µm, under a constant slurry flow rate of Qsl=85 cc/min, with a pad 

coefficient of friction of µfr =0.4, under a pad and carrier spinning rate of 200 and 30 

RPM respectively. The change in pressure will directly affect the amount of heat 

dispersed beneath the wafer as a result of the greater slurry, pad, and substrate shear 

stress interaction during polishing. For a load of 17.24 kPa the heat flux input into the 

system covers a range of (qsl =4.1–9.8 kW/m2) along the leading edge towards the end of 

the wafer trailing edge. The increment of the load up to 41.37 kPa as part of the modeling 

set up, will increase the limits of a variable heat flux from 10 to 23.4 (kW/m2) along the 

dimensionless radial distance of the control volume under study. The temperature rise of 

the wafer under a load of 41.37 and 17.24 kPa were approximately equal to 8.2 and 3.85 

degrees respectively at the end of the wafer trailing edge. The substrate and pad 

temperature distributions increased under a higher pressure load due to the increment of 

the heat flux generated per unit area. Taking into consideration this temperature gradient, 

we can expect that the MRR will increase by a factor of 27% and 55% at the trailing edge 

region along the 2 to 4 o’clock positions according to experimental measurements of Li et 

al. [124], where the increment of 1 C or K increased the MRR by 7%. In addition, figure 

7.3 shows that the backflow effect on the temperature rise was quite gone under the CMP 

parameters input for this numerical run. One reasonable explanation for the absence of 

the backflow effect observed by Muldowney [147] is that the increment of pad spinning 

rate overcame the surface tensional forces beneath the substrate and pad, as shown in 

figure 7.3. The hotter slurry was driven out towards the end of the platen at a faster rate. 
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Figure 7.3 Cross–sectional wafer and pad temperature distributions and local heat 
transfer convection coefficients along the center of pad and substrate 
surfaces under two characteristic CMP pressure loads. 

 

The heat transfer convection coefficients for wafer and pad surfaces follow the 

same pattern as shown in figure 7.2. The wafer heat transfer convection coefficient values 

range from 159 to 31(W/m2K) of both loads of applied pressure. Additionally, the figures 

reveal that the wafer heat transfer convection coefficients decrease by an average margin 

of 80% for both loads of 17.24 and 41.37 kPa respectively, once it reaches the wafer 

outer edge at the trailing region. The average values of the wafer heat transfer convection 

coefficient along the surface were approximately equal to 43.32 and 54.32 (W/m2K) 

under a load of 17.24 and 41.37 kPa respectively. The pad heat transfer convection 

coefficient values range from 215 to 30 (W/m2K). In addition, the figures reveal that the 

pad heat transfer convection coefficients decrease by an average margin of 85% for both 
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loads of 17.24 and 41.37 kPa respectively, once it reaches the wafer outer edge at the 

trailing region. The average pad values of the heat transfer convection coefficient along 

the surface were approximately equal to 53.01 and 65.37(W/m2K) for the smaller and 

higher load respectively. Low heat transfer convection coefficients at a particular region 

indicate the presence of a larger temperature gradient between the incoming slurry at the 

pad or substrate surfaces. The average heat transfer convection coefficients obtained are 

in agreement with the earlier experimental works of Borucki et al. [127, 128].  

The temperature contour distributions of the wafer and pad surfaces under two 

characteristic carrier spinning rates of 15 and 75 RPM are shown in figures 7.4a and 7.4b. 

The steady state temperature contour plots were done for an abrasive film thickness of 40 

µm of alumina, under a constant slurry flow rate of (Qsl=60 cc/min), with a pad 

coefficient of friction (µfr =0.4), for a constant load of 34.48 kPa that generates a variable 

heat flux (qsl =6–14.1 kW/m2), and pad spinning rate of 150 RPM. The steady state 

temperature contour distributions in figure 7.4a reach up to a temperature difference of 

5.5 degrees for a small fraction of the upper region at the 12, 3 and 4 o’clock positions of 

the trailing edge of the wafer and pad surfaces including the slurry. Figure 7.4b illustrates 

a temperature gradient of 5 degrees for a carrier spinning rate of 75 RPM. The 

temperature gradient extends at few areas around the 12, and 3 to 4 o’clock positions of 

the trailing edge of the wafer and pad surfaces among the slurry. 
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(a)  

 

(b)  

Figure 7.4 Steady state wafer, and pad temperature contour distributions for two 
different carrier spinning rates equal to: (a) Ωc=15 RPM and (b) Ωc=75 
RPM. 
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Figure 7.5 Cross–sectional temperature distributions and local heat transfer convection 
coefficients along the center of pad and substrate surfaces under two 
different carrier spinning rates. 

 

The cross–sectional wafer and pad surface temperatures rise, and the local heat 

transfer convection coefficient distributions along the dimensional radial distance that 

extend from the leading to the end of the trailing edge of both surfaces for two 

characteristic carrier spinning rates of 15 and 75 RPM, are shown in figure 7.5 under the 

same polishing conditions of figures 7.4a and 7.4b. The substrate and pad temperature 

distributions for a carrier spinning rate (Ωc) of 75 RPM are slightly smaller compared to a 

carrier spinning rate (Ωc) of 15 RPM, as shown in figure 7.5. The temperature difference 

could be seen at a wafer dimensionless radial distance around r/rw =0.8 towards the end 

of trailing edge, where the temperature of the pad and wafer drops for a carrier spinning 

rate (Ωc) of 75 RPM, and rise for a carrier spinning rate (Ωc) of 15 RPM. The carrier that 
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spins at 75 RPM drives out the hot slurry from the backflow region overcoming the 

surface tensional forces caused by the shear stress. Conversely, the carrier that spins at a 

spinning rate of 15 RPM allows a greater hot slurry recirculation at the backflow region 

observed by Muldowney [147], causing an increment of 0.825 degrees at the 3 o’clock 

position of the substrate trailing edge. A backflow effect is linked to the rotational motion 

of the slurry and the shear effect of frictional forces due to the surface tension and 

viscosity of the slurry particles along such a small gap. The average temperature rise of 

the wafer and pad under a carrier spinning rate of 75 and 15 RPM were approximately 

equal to 3.4, 3.5, and 3 degrees respectively along the wafer and pad trailing edges. 

The heat transfer convection coefficients for wafer and pad surfaces follow a 

higher heat transfer rate pattern that starts at the surfaces leading edge and decreases 

along the radial distance up to the surfaces trailing edge. The wafer heat transfer 

convection coefficient values range from 162 to 24 (W/m2K). The average values of the 

heat transfer convection coefficient for the wafer along the surface were approximately 

equal to 42.61 and 45.79 (W/m2K) under lower and higher carrier spinning rate 

conditions. The pad heat transfer convection coefficient values range from 190 to 25 

(W/m2K). The average values of the heat transfer convection coefficient for the pad along 

the surface were approximately equal to 49.15 and 52.43(W/m2K) under carrier spinning 

rates of 15 and 75 RPM. This effect results in higher convective coefficients for the pad 

by an average margin of 14.93% under a lower and higher carrier spinning rate 

respectively.  

The cross–sectional wafer and pad surfaces temperature rise and the local heat 

transfer convection coefficient distributions along the dimensional radial distance of the 
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control volume under study for three characteristic slurry film thicknesses are shown in 

figures 7.6 and 7.7. The temperature distribution and the local heat transfer convection 

coefficients were set for a constant alumina slurry flow rate of 65 cc/min, with a pad 

coefficient of friction (µfr =0.4), under a constant load of P= 28 kPa, for a variable heat 

flux rate of 5 to 11.65 kW/m2, with pad and carrier spinning rates of 150 and 40 RPM. 

Figure 7.6 shows how the temperature distribution along the pad and wafer surface 

decreases with the increment of the slurry film thickness. 

296

297

298

299

300

301

302

303

304

305

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Dimensionless radial location, r/rw 

S
ur

fa
ce

 T
em

pe
ra

tu
re

, T
(K

)

Tw100

Tp100

Tw175
Tp175

Tw250

Tp250

Leading Edge

Trailing Edge
Tw, δsl=40 µm

Tp, δsl=40 µm

Tw, δsl =120 µm

Tp, δsl=120 µm

Tw, δsl=200 µm

Tp, δsl=200 µm

 

Figure 7.6 Temperature distributions along the center of pad and substrate surfaces for 
three characteristic slurry film thicknesses. 

 

The average wafer temperature results of figure 7.6 along the radial distance were 

approximately equal to 299.12, 299.86, and 301.15 degrees K for the abrasive film 

thicknesses (δsl) of 200, 120, and 40 µm respectively. As seen in figure 7.6, the wafer 
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temperature distributions of thicker film are lower and more uniform due to an increment 

of the volumetric flow rate of the slurry that moves beneath the substrate and pad 

surfaces. The increment of the volumetric flow rate increases the heat advection per unit 

area, therefore increasing the heat transfer effect on the pad and substrate surfaces. This 

effect reduces the overall temperature of the wafer and pad at the control volume under 

study.  
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Figure 7.7  Local heat transfer convection coefficient distributions along the center of 
pad and substrate surfaces for three characteristic slurry film thicknesses. 

 

Figure 7.7 illustrates the increment of the heat transfer convection coefficients of 

pad and wafer under thicker slurry films. The average heat transfer convection 

coefficients of the pad surfaces in figure 7.7 were equal to 55.91, 50.62, and 48.99 

W/m2K and the average heat transfer convection coefficients of the substrate surfaces 

were equal to 46.49, 44.13, and 39.29 W/m2K for the abrasive film thicknesses (δsl) of 
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200, 120, and 40 µm respectively. The average pad heat transfer convection coefficients 

obtained were higher than the average wafer heat transfer convection coefficients by 

20.26%, 14.71% and 24.69% for the slurry film thicknesses (δsl) of 200, 120, and 40 µm 

respectively. Present results are in agreement with Mudhivarthi [146] and Borucki [127] 

findings where the increment of the film thickness reduced the mechanical contact, and 

increased the amount of slurry interaction resulting in lower temperature profiles, 

increasing the heat transfer convection along the wafer region exposed to the abrasive–

pad interface. 

Figures 7.8a and 7.8b illustrate the temperature contour distributions of the wafer 

and pad surfaces under two characteristic pad spinning rates of 100 and 200 RPM. The 

steady state temperature contour plots were set for an abrasive film thickness of 40 µm of 

alumina, at constant slurry flow rate of 50 cc/min, under a constant load of 24.35 kPa, for 

a variable heat flux range of 6 to 8.5 kW/m2, and a carrier spinning rate of 30 RPM. 

Figure 7.8a shows the steady state temperature difference of 6 degrees at a small region 

of the slurry, wafer, and pad surfaces at the 2 and 3 o’clock positions for a pad spinning 

rate of 100 RPM.  

Figure 7.8b shows a temperature gradient of 4.5 degrees for a pad spinning rate of 

200 RPM. The temperature gradient extends at a small fraction of the 3 and 4 o’clock 

positions of the trailing edge of the substrate surface and a small portion of the slurry 

region beneath the same wafer orientation. 
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(a)  

 

(b)  

Figure 7.8 Steady state wafer, and pad temperature contour distributions for two 
characteristic pad spinning rates equal to: (a) Ωp=100 RPM and (b) Ωp=200 
RPM. 
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100 and 200 RPM, are shown in figure 7.9 under the same polishing conditions described 

in figures 7.8a and 7.8b.  
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Figure 7.9 Cross–sectional temperature distributions and local heat transfer convection 
coefficients along the center of pad and substrate surfaces under two 
different pad spinning rates. 

 

The substrate and pad temperature distributions for a pad spinning rate (Ωp) of 

200 RPM decreased in comparison with the results of a pad spinning rate (Ωp) of 100 

RPM, as shown in figure 7.9. The pad that spins at 200 RPM drive out the hot slurry from 

the backflow region overcoming the surface tension forces caused by the shear stress. 

Conversely, the pad that spins at a spinning rate of 100 RPM allows a major hot slurry 

recirculation at the backflow region, causing an increment of 1.25 degrees at the 3 

o’clock position of the substrate trailing edge. A backflow effect is linked to the 

rotational motion of the slurry and the shear effect of frictional forces due to the surface 
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tension and viscosity of the slurry particles along such a small gap. The average 

temperature rise of the wafer and pad under a pad spinning rate of 200 and 100 RPM 

were approximately equal to 3.4, 3.5, and 3 degrees respectively along the wafer and pad 

trailing edges.  

The heat transfer convection coefficients for wafer and pad surfaces follow the 

same pattern as figures 7.2, 7.3, 7.5 and 7.6. The wafer heat transfer convection 

coefficient values range from 130 to 14 (W/m2K). The average values of the heat transfer 

convection coefficient for the wafer along the surface were approximately equal to 33.07 

and 53.06 (W/m2K) under lower and higher pad spinning rate conditions respectively. 

The pad heat transfer convection coefficient values range from 180 to 15 (W/m2K). The 

average values of the heat transfer convection coefficient for the pad along the surface 

were approximately equal to 38.05 and 64.03(W/m2K) under a pad spinning rate of 100 

and 200 RPM respectively. This effect results in higher convective coefficients for the 

pad by an average margin of 15.06% and 20.67% under lower and higher pad spinning 

rates.  

A lower pad spinning rate of Ωp=100 RPM increased the backflow recirculation 

for a dimensionless radial distance 0.75 < r/rw ≤ 1. However, the increment of the pad 

spinning rate reduces the backflow effect observed by Muldowney [147], as shown in the 

pad and wafer temperature distributions in figure 7.9 for a pad spinning rate of 200 RPM. 

This thermal effect is consistent with the findings of Hong et al. [132] that point out that 

polishing temperature varies in parallel with their speed integral. The increment of the 

angular velocity of the platen generates more heat dissipation during the chemical 

mechanical polishing process due to the increment of the tangential velocity at the 
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thermal boundary layer thickness of the slurry that is force out through the polishing, 

which is replaced simultaneously with fresh, cool slurry that enters beneath the polished 

wafer around its perimeter. The minimum heat–transfer slurry–wafer interaction occurred 

close to the wafer trailing edge area. Hot spots can be observed along the trailing edge 

and some inner regions where part of the slurry got trapped due to the emerging 

rotational flow patterns. Similar temperature profile patterns have been documented by 

Borucki et al. [127, 128]. 
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Figure 7.10 Comparison of mean temperature rise of pad at different slurry flow rates of 
present results with experimental results of Borucki et al. [128]. 

 

Figure 7.10 shows the numerical results of mean pad temperature rise at different 

flow rates along the substrate edge compared to the results from the experimental work 

by Borucki et al. [128]. As seen in figure 7.10, the agreement of the experimental mean 

temperature rise obtained by Borucki et al. [128] with the present numerical data is quite 
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good. The temperature rise under slurry flow rates of 60, and 80 cc/min correlates with an 

average margin of 6.92%, and 4.73% respectively. Note that numerical predictions are 

within an average percentage off error of 5.83%.  

One of the papers used for the validation of this numerical study was the 

experimental work by Borucki et al. [127] using a JSR Corp. flat pad with a commercial 

silica slurry under a flow rate equal to Qsl=60 cc/min. The nominal wafer pressures used 

were 2.5 and 6 (psi) or (17.24 and 41.37 kPa) respectively, and the co–rotation rates for 

the carrier and pad range from 120 to 140 RPM. The average heat transfer convection 

coefficients from the present numerical simulation for different combinations of CMP 

parameters and input heat flux are listed in Table 7.1. The heat transfer convection 

coefficients for the JSR Corp. flat pad were correlated with the present numerical results 

of runs #12 and #13 versus experimental results presented by Borucki et al. [127] on runs 

#14 and #15 under the CMP parameters described in Table 7.1. Present numerical heat 

transfer results of runs #12 and #13 correlate with an average margin of 8.69%, and 

5.57% respectively. Note that numerical predictions are within an average percentage off 

error of 7.13%. The numerical results reveal a better correlation at larger flow rates. The 

factor of working at the micrometer scale under the influence of two spinning surfaces 

about different axis of rotation, the complexity of flow under such type of boundary 

conditions, and the range of flow parameters may contribute to the discrepancy between 

experimental and numerical data. In addition, computational errors can be introduced 

because of round off and discretization of the mesh. Considering these factors, the overall 

comparison with test and numerical results of previous studies is satisfactory. 
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Table 7.1 Average substrate and pad heat transfer convection coefficients and 
experimental data of Borucki et al. [127] under different CMP parameters 
and variable input heat flux along the surfaces. 

 

 
 

7.2 Transient Process 

Transient temperature profiles and the heat transfer convection coefficients of 

substrate and pad surfaces during a CMP process were acquired using a three 

dimensional FEM model. Figure 7.11a shows the maximum and minimum temperature 

contour distributions for the control volume under study for a slurry flow rate of Qsl=30 

cc/min. During the early part of the transient process the slurry, the wafer and pad 

surfaces reached a temperature difference of 6 degrees at a considerable region of the 

wafer trailing edge at the 2, 3, and 4 o’clock positions. After a short period of 100 sec the 

transient temperature difference of 6 degrees remains the same at smaller areas of the 

wafer trailing edge along the 2, 3, and 4 o’clock positions. A second numerical run with 
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the same polishing conditions except for the amount of slurry flow rate (Qsl=75 cc/min) 

are shown in figure 7.11b. Figure 7.11b shows a temperature difference of 10 degrees at a 

small fraction of the upper region of the trailing edge during the entire polishing process.  

  

(a) 

  

(b) 

Figure 7.11 Slurry (alumina), wafer, and pad surfaces temperature contour distributions 
for a flow rate value of: (a) Qsl=30 cc/min and (b) Qsl=75 cc/min. 

 

In general, the temperature distributions of the wafer–pad interface are smaller for 

a slurry rate of Qsl=75 cc/min just with the exception of two regions close to the trailing 

edge of the wafer exposed to the backflow effect of the slurry observed by Muldowney 

[147]. A backflow effect is linked to the rotational motion of the slurry and the shear 
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effect of frictional forces due to the surface tension of the slurry particles along such a 

small gap. 

The transient substrate temperature variations and wafer–pad temperature 

difference for two different flow rates at the 3 and 5 o’clock positions are shown in 

figures 7.12a and 7.12b respectively. The transient temperature results were done for an 

abrasive film thickness of 40 µm, at a dimensionless radial distance of r/rw=7/8 under a 

constant pressure load of P=24.35 kPa, for a variable heat flux (qsl=4.6–10.8 kW/m2, 

under a pad and carrier spinning rate of 150 and 30 RPM respectively. The variable heat 

flux rate (qsl) used for this analysis is a function of the  pressure load, pad coefficient of 

friction, the radial distance measured from the center of the platen, and the relative pad–

wafer spinning rate. The wafer temperature results of figure 7.12a for a slurry flow rate of 

(Qsl=75 cc/min) are slightly lower in comparison with an alumina flow rate of 30 cc/min. 

That slight change in temperature can be confirmed with the comparison of the average 

transient wafer temperature differences of both flow rates during the entire process. An 

average transient wafer temperature difference of 4.35 degrees was attained for a lower 

slurry flow rate versus the 3.98 degrees acquired under a higher slurry flow rate. The 

wafer–pad temperature differences showed in figure 7.12a reveals that the pad 

temperature values are lower compared to the substrate surface results. The wafer–pad 

temperature differences examined range up to 1.2 degrees K or C for the lower slurry rate 

and up to 0.6 degrees for the higher slurry flow rate at the radial location under study 

(r/rw=7/8). The temperature difference of a slurry flow rate of 75 cc/min was lower and 

more stable compared with a slurry flow rate of 30 cc/min.  
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In contrast, figure 7.12b shows lower temperature results for a slurry rate of 30 

cc/min at the 5 o’clock position for a radial distance r/rw=7/8 of the wafer. That slight 

change in temperature can be corroborated with the comparison of average temperature 

differences of both slurry flow rates during the entire process. An average wafer 

temperature difference of 4.25 degrees was attained for a lower slurry flow rate versus a 

4.38 degrees acquired under a higher flow rate of alumina. The wafer temperature at the 3 

o’clock position is about 1 degree higher than the 5 o’clock position under both slurry 

flow rates. This radial temperature variation is related to the slurry flow and the heat 

transfer beneath the wafer surface. Fresh, cool slurry enters beneath the polished wafer 

around its perimeter. As seen in figure 7.12b, that the 5 o’clock position is in thermal 

advantage because it is facing the leading edge of the slurry and it is closer to the center 

of the platen that holds that pad.  

In contrast, the 3 o’clock position is facing the trailing edge far away from the 

center of the platen; consequently it had more heat to transfer due to frictional interaction 

of pad–slurry particles beneath the wafer. The wafer pad temperature differences 

examined range up to 0.92 degrees K or C for the lower slurry flow rate and up to 0.37 

degrees for the higher slurry flow rate at a radial location of r/rw=7/8 along the 5 o’clock 

position, as shown in figure 7.12b. The temperature difference of a 75 cc/min slurry flow 

rate was lower and more stable compared with a lower slurry flow rate of 30 cc/min. The 

temperature contour plots in figures 7.11a and 7.11b, and temperature variation of figures 

7.12a and 7.12b reveal that the wafer temperature profile decreases with the increment of 

the slurry velocity. Present numerical results are in agreement with Sampurno et al. [121].  
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(b)  

Figure 7.12 Transient wafer temperature distribution and wafer pad temperature 
differences for two different flow rates at a radial location of r/rw=7/8 along 
the: (a) 3 o’clock position and (b) 5 o’clock position. 
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(b) 

Figure 7.13 Wafer and pad transient heat transfer convection coefficients for two 
different flow rates at a radial location of r/rw=7/8 along the: (a) 3 o’clock 
position and (b) 5 o’clock position. 
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Figures 7.13a and 7.13b show the wafer and pad heat transfer convection 

coefficients at the 3 and 5 o’clock positions respectively for the same conditions of 

figures 7.12a and 7.12b. The heat transfer convection coefficients in figure 7.13a are 

slightly higher at the pad than the substrate surface that is due to a lower temperature 

difference between slurry and pad. This validates the results obtained in figure 7.12a and 

7.12b where the temperature difference between the pad and wafer substrate were around 

1 C or K smaller. That effect results in higher convective coefficients for the pad by 

5.26% and 8.61% under lower and higher slurry flow rates. The average values of the 

heat transfer convection coefficient for the pad attained at this location were 

approximately equal to 26.82 and 29.19 W/m2K under lower and higher slurry flow rate 

conditions. The heat transfer convection coefficients in figure 7.13b are slightly higher at 

the pad than the substrate surface due to a lower temperature gradient between the 

incoming slurry and pad surface. This effect results in higher convective coefficients for 

the pad by 6.86% and 9.83% under lower and higher slurry flow rates. The average 

values of the heat transfer convection coefficients for the pad attained at this location 

were about 22.28 and 23.97 W/m2K under lower and higher slurry flow rates. 

Figures 7.14a and 7.14b show the maximum and minimum temperature contour 

distributions for the control volume under study at a constant load of 17.24 kPa (2.5psi) 

and 41.37 kPa (6psi) respectively. The transient temperature contour plots were done for 

an abrasive film thickness of 40 µm, under a constant slurry flow rate of Qsl=85 cc/min, 

with a pad coefficient of friction of µfr =0.4, under a pad and carrier spinning rate of 200 

and 30 RPM respectively. This change in pressure directly affects the amount of heat 

dispersed beneath the wafer as result of the greater slurry, pad, and substrate shear stress 
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interaction during the polishing. For a load of 17.24 kPa the heat flux input into the 

system covers a range of (qsl=4.14–9.63 kW/m2) along the leading to the trailing edge of 

the wafer, as shown in figure 7.14a. During the early part of the transient process the 

slurry, the wafer and pad reached up to a temperature difference of 8 degrees at a small 

fraction of the upper region of the trailing edge. Later on, after a short period of 100 

seconds the transient temperature difference decreases slightly to 7 degrees and extends 

along the trailing edge in small areas from the 12 to 4 o’clock positions.  

 

  

(a) 

  

(b) 

Figure 7.14 Slurry, wafer, and pad surfaces temperature contour distributions under a 
constant pressure value of: (a) 17.24 kPa and (b) 41.37 kPa. 
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A second trial under study is shown in figure 7.14b for the same polishing 

conditions except for an increment of the applied load to 41.37 kPa as part of the 

modeling set up. This new applied load set the limits of a variable heat flux that range 

from 10.38 to 23.12 (kW/m2) along the leading to the trailing edge of the wafer. Figure 

7.14b illustrates a temperature difference of 14 degrees during the early part of the 

process at a considerable region of the wafer located at the 12 to 5 o’clock position of the 

trailing edge. After a relative short period of 100 seconds the temperature difference 

decreases to 12 degrees at various constricted areas more likely at the edge of the wafer, 

due to the amount of heat transfer with a slurry flow rate under a higher temperature after 

being exposed to the shear stress and frictional forces as part of the transient CMP 

process. The effect of adding more pressure to the CMP process produced larger 

temperature gradients at the wafer–pad interface as a result of more contact to contact 

abrasion mode of the pad with slurry particles and substrate, as shown in figures 7.14a 

and 7.14b. Present results are in agreement with Sikder et al. [148]. Their experimental 

results using an acoustic sensor revealed that the coefficient of friction decreased under a 

lower applied pressure. 

Figures 7.15a and 7.15b show the variable heat transfer effect of two different 

applied loads of pressure from the universal bench top tribometer during the polishing 

process on the local transient temperature distributions at different specific radial 

distances measured from the center of the substrate. The transient wafer temperature 

results of figure 7.15a under a load of 17.24 kPa are lower in comparison with the results 

obtained at figure 7.15b under the same dynamic polishing conditions of the model under 

study in figures 7.14a and 7.14b. The average change in temperature of figure 7.15a 
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compared with figure 7.15b at the 12 o’clock location for each of the study radial 

distances were approximately equal to 2.5 degrees at r/rw=2/3 of the wafer, 4.27 degrees 

at r/rw=7/8 and 7.21 degrees along the wafer edge. Average wafer–pad temperature 

differences of 0.74, 2.24, and 0.69 degrees were attained at each of the following radial 

locations of 2/3, 7/8, and 1 respectively under a pressure load of 17.24 kPa as shown in 

figure 7.15a. The wafer–pad temperature differences shown in figures 7.15a and 7.15b 

range up to 4.5 to 6 degrees respectively. Pad temperature values are lower than wafer 

substrate results at the polishing surface. The wafer–pad temperature differences at a 

radial distance around the edge (r/rw=1) were lower and more stable in comparison with 

the other two radial locations in figures 7.15a and 7.15b. The temperature differential at 

the radial location of r/rw=7/8 was less stable. This instability is part of the fluid dynamics 

of the slurry that is in continuous re–circulating motion entrapped beneath the wafer and 

polishing pad surfaces. As part of the mechanics of the CMP process, fresh and cool 

slurry it is transported continuously from the center of the pad to the surface beneath the 

substrate, causing a major fluctuation of the temperature gradient. This effect is more 

pronounced when the heat slurry is getting closer to the starting backflow region 

underneath the slurry. Conversely, this effect is less pronounced once the outgoing slurry 

reaches the substrate edge at the outlet and mixes up with fresh and cool slurry. Average 

wafer–pad temperature differences of 1.76, 3.38, and 1.62 degrees were attained at each 

of the following radial locations 2/3, 7/8, and 1 respectively under a pressure load of 

41.37 kPa, as shown in figure 7.15b.  
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(b) 

Figure 7.15 Transient wafer temperature distributions and wafer pad temperature 
differences at different radial locations along the 12 o’clock position under 
a constant pressure value of: (a) P=17.24 kPa and (b) P=41.37 kPa. 
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(b) 

Figure 7.16 Transient wafer heat transfer convection coefficient at different radial 
locations along the 12 o’clock position under a constant pressure value of: 
(a) P=17.24 kPa and (b) P=41.37 kPa. 
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The wafer heat transfer convection coefficients at three specific radial locations 

for two distinctive pressure loads are shown in figures 7.16a and 7.16b. Figure 7.16a 

shows that the pressure effect on the variable heat flux is more intense at the trailing edge 

of the wafer that is further away from the center of the pad, causing and an uneven 

heating effect on the substrate surface. The convective heat transfer coefficients effect 

was more pronounced at a radial distance of r/rw=2/3 with an average value of 32.14 

W/m2K. The average values of the pad heat transfer convection coefficient attained were 

around 21.3 and 17.62 W/m2K for the radial locations of r/rw=7/8 and 1 respectively. 

Figure 7.16b shows the same pattern of figure 7.16a, where the heat transfer convection 

coefficient effect was more pronounced at a radial distance of r/rw=2/3 with an average 

value equal to 42.75 W/m2K. The heat transfer convection coefficient effect decreased by 

an average margin of 45.05% once it reaches the wafer outer edge at the trailing region. 

A lower heat transfer convection coefficient at a particular location indicates the presence 

of a hot spot or a larger temperature gradient between the incoming slurry at the pad or 

substrate surfaces. The average heat transfer convection coefficients obtained are in 

agreement with the earlier experimental works of Borucki et al. [127,128].  

The temperature contour distributions of the wafer and pad surfaces under two 

characteristic carrier spinning rates of 15 and 75 RPM are shown in figures 7.17a and 

7.17b. The transient temperature contour plots were done for an abrasive film thickness 

of 40 µm of alumina, under a constant slurry flow rate of (Qsl=60 cc/min), with a pad 

coefficient of friction (µfr=0.4), under a constant load of 34.48 kPa, for a variable heat 

flux (qsl=6.6–15.3 kW/m2), and pad spinning rate of 145 RPM. During the early part of 

the transient process in figure 7.17a the slurry, the wafer and pad reached up to a 
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temperature difference of 9 degrees at a small fraction of the upper region of the trailing 

edge. Later on, the transient temperature difference decreases slightly to 8 degrees and 

extends along the trailing edge to series of small areas along the 12 to 3 o’clock positions 

after a period of 100 seconds, as shown in figure 7.17a. Figure 7.17b illustrates a 

temperature gradient of 5 degrees during the early part of the process at small areas 

around the 2 to 4 o’clock positions of the trailing edge. After a short period of 100 

seconds the temperature gradient of 5 degrees remains the same around the 3 o’clock 

position, as shown in figure 7.17b. 

  

(a) 

  

(b) 

Figure 7.17 Slurry, wafer, and pad surfaces temperature contour plots for a carrier 
spinning rate equal to: (a) Ωc=15 RPM and (b) Ωc=75 RPM. 
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(b) 

Figure 7.18 Transient wafer temperature distributions and wafer pad temperature 
differences for two different carrier spinning rates at a: (a) Radial location 
of r/rw=1 along the 12 o’clock position and (b) Radial location of r/rw=7/8 
along the 3 o’clock position. 
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Figures 7.18a and 7.18b show the transient substrate temperature variations and 

wafer–pad temperature differences for two distinctive carrier spinning rates at the 12 and 

3 o’clock positions with the same polishing conditions described in figures 7.17a and 

7.17b. The average wafer temperature results for a carrier spinning rate of (Ωc=75 RPM) 

are 2.59 degrees lower compared to a carrier spinning rate of 15 RPM, as shown in figure 

10a. The wafer–pad temperature differences obtained in figure 7.18a range up to 0.86 

degrees K or C for the lower carrier spinning rate and up to 0.655 degrees for the carrier 

at higher spinning rate at the radial location under study of r/rw=1. An overall average 

transient wafer temperature difference of 8.56 degrees was obtained under a carrier 

spinning rate of 15 RPM versus the 5.97 degrees differential acquired for a carrier 

spinning rate of 75 RPM. The wafer–pad temperature differences examined range up to 

0.86 degrees K or C for the lower carrier spinning rate and up to 0.655 degrees for the 

higher carrier spinning rate at the radial location under study of r/rw=1.  

Figure 7.18b shows that the average transient temperature results for a carrier 

spinning rate of (Ωc=75 RPM) were approximately 1.55 degrees lower compared to a 

carrier spinning rate of 15 RPM along the 3 o’clock position at a radial distance of 7/8 of 

the wafer radius. The overall average transient wafer temperature differential of 6.63 

degrees was attained for a lower carrier spinning rate versus the 5.08 degrees differential 

acquired for a carrier at higher spinning rate. Figure 7.18b kept the same wafer–pad 

temperature difference pattern observed in figure 7.18a. The wafer–pad temperature 

differences examined range up to 0.605 degrees K or C for the carrier at a lower spinning 

rate and up to 0.31 degrees for the carrier at a higher spinning rate at the radial location 

under study. The wafer temperature at the 12 o’clock position in figure 7.18a is about 1.5 
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degrees higher than the temperature observed at the 3 o’clock position for both carrier 

spinning rates. In general, the radial temperature variations are related to the slurry flow 

rate and the heat transfer beneath the wafer. Figure 7.18a illustrates that the 12 o’clock 

position at r/rw=1 is in thermal disadvantage because it is at the back portion of the 

leading edge of the slurry. In contrast, the 3 o’clock position is between the leading and 

trailing edge at a radial distance of r/rw=7/8, therefore it had less heat to transfer from the 

interaction of pad–slurry particles beneath the wafer. Additionally, the wafer–pad 

temperature differences for a carrier spinning rate of Ωc=75 RPM were lower and more 

stable than a carrier under a spinning rate of 15 RPM, as shown in figures 7.18a and 

7.18b. 

Figures 7.19a and 7.19b show the wafer and pad heat transfer convection 

coefficients at the 12 and 3 o’clock positions under the same numerical parameters of 

figures 7.18a and 7.18b. In addition, figures 7.19a and 7.19b show a similar heat transfer 

convection coefficient trend profile, as shown in figures 7.13a and 7.13b. Therefore, 

higher heat transfer convection coefficients are observed in figure 7.19a for the pad by a 

margin of 14.15% and 6.98% for a carrier at higher and lower spinning rates respectively. 

The average heat transfer convection coefficients for the pad along the 12 o’clock 

position at a radial location of r/rw=1 were about 27.77 and 19.47 W/m2K under higher 

and lower carrier spinning rates, as shown in figure 7.19a. 
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(b)  

Figure 7.19 Wafer and pad transient heat transfer convection coefficients for two 
different carrier spinning rates at a: (a) Radial location of r/rw=1 along the 
12 o’clock position and (b) Radial location of r/rw=7/8 along the 3 o’clock 
position. 
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Figure 7.19b reveals that the heat transfer convection coefficients for the pad 

increased by 7.22% and 3.12% for a carrier at higher and lower spinning rates 

respectively. The average values of the heat transfer convection coefficient for the pad 

along the 3 o’clock position at a radial location of r/rw=7/8 were approximately equal to 

40.24 and 31.36 W/m2K under higher and lower carrier spinning rate conditions, as 

shown in figure 7.19b. 

The temperature contour plots of the wafer and pad surfaces under two different 

slurry film thicknesses of (δsl=40 and 120 µm) are shown in figures 7.20a and 7.20b 

respectively. The transient temperature contour were prepared for a constant alumina 

slurry flow rate of 65 cc/min, with a pad coefficient of friction (µfr =0.4), under a constant 

load of P= 28 kPa, for a variable heat flux rate of 5.26 to 12.30 kW/m2, with a pad and 

carrier spinning rate of 150 and 40 RPM respectively. During the early part of the 

transient process, as shown in figure 7.20a the wafer and pad reached up to a temperature 

difference of 9 degrees at a considerable region of the wafer along the 12 to 5 o’clock 

positions of the trailing edge. This thermal effect is consistent with the findings of Hong 

et al. [132], which pointed out that polishing temperature varies in parallel with their 

speed integral. Their finding reveals that the location of the highest predicted temperature 

by the speed integral match the highest measured temperature on the substrate surface. 

After a period of 100 sec the temperature gradient of 9 degrees remained the same at a 

few small areas around the 3 to 4 o’clock positions of the trailing edge of the wafer, as 

shown in figure 7.20a. Figure 7.20b shows a temperature difference of 6 degrees during 

the early part of the process at a small fraction of the upper region (12 o’clock) of the 

trailing edge and a significant region along the 3 to 4 o’clock positions closer to the 
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center of the substrate. Later on, the transient temperature difference reduced slightly to 5 

degrees to three constricted areas near the trailing edge of the wafer at the 12, 3 and 4 

o’clock positions. In addition, the temperature gradient for a thicker slurry film at the pad 

surface showed an overall temperature difference of 3 degrees approximately. 

  

(a) 

  

(b) 

Figure 7.20 Slurry, wafer, and pad surfaces temperature contour distributions under a 
slurry film thickness equal to: (a) δsl=40 µm and (b) δsl=120 µm. 

 

Figure 7.21 shows the transient substrate temperature variations and wafer–pad 

temperature differences for three different slurry film thicknesses at the 1 o’clock 

position, for the same conditions described in the preceding temperature contour plots. 
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The average transient wafer temperature results of figure 7.21 at a radial distance of 

r/rw=7/8 along the 1 o’clock position were approximately equal to 301.38, 301.98, and 

303.13 degrees K for the abrasive film thicknesses (δsl) of 200, 120, and 40 µm. The 

wafer–pad temperature differences examined range up to 3.03, 1.95, and 0.67 degrees K 

or C for the following abrasive film thickness (δsl) of 200, 120, and 40 µm. Conversely, 

the wafer temperature distributions of thicker film are lower due to an increment of the 

volumetric flow rate of the slurry that moves beneath the substrate and pad surfaces.  
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Figure 7.21 Transient wafer temperature distributions and wafer pad temperature 
differences for 3 different slurry film thicknesses at a radial location of 
r/rw=7/8 along the 1 o’clock position. 

 

Figure 7.22 shows the wafer heat transfer convection coefficients at a radial 

distance of r/rw=7/8 along the 1 o’clock position for three different slurry film 

thicknesses. The average heat transfer convection coefficients of the substrate surfaces in 
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figure 7.22 attained were equal to 28.51, 24.19, and 20.02 W/m2K for the abrasive film 

thicknesses (δsl) of 200, 120, and 40 µm respectively. The increment of volumetric flow 

rate increased the heat advection per unit area; therefore it removes more heat in less 

time. This effect reduces the overall temperature of the wafer and pad at the control 

volume under study. Present results are in agreement with the findings of Mudhivarthi 

[146] and Sikder et al. [148], where the increment of the film thickness reduced the 

mechanical contact, and increased the amount of slurry interaction, resulting in lower 

temperature profiles around the trailing area of the wafer region exposed to the abrasive–

pad interface.  
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Figure 7.22 Transient wafer heat transfer convection coefficients for three different 
slurry film thicknesses at a radial location of r/rw=7/8 along the 3 o’clock 
position. 
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The temperature contour distributions of the wafer and pad surfaces under two 

characteristic pad spinning rates of 175 and 250 RPM are shown in figures 7.23a and 

7.23b.  

  

(a) 

  

(b) 

Figure 7.23 Wafer, and pad temperature contour distributions for a pad spinning rate 
equal to: (a) Ωp=175 RPM and (b) Ωp=250 RPM. 

 

The transient temperature contour plots were set for an alumina abrasive film 

thickness of 40 µm, at a constant slurry flow rate of 50 cc/min, under a constant load of 

24.35 kPa, for a variable heat flux range of 3.9 to 9.14 kW/m2, and a carrier spinning rate 

of 30 RPM. During the early part of the transient process in figure 7.23a the slurry, wafer 
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and pad reached up to a temperature difference of 4 degrees at a small fraction of the 

lower region of the leading edge at the 6 to 9 o’clock positions. Later on, the transient 

temperature difference increases around 8 degrees at a small region along the 3 o’clock 

position for a time frame of 100 seconds, as shown in figure 7.23a. Figure 7.23b shows a 

temperature gradient of 1.5 degrees at the early part of the process at a small section of 

the lower region along the leading edge at the 6 to 9 o’clock positions. After a short 

period of 100 seconds the transient temperature gradient increases by 5.5 degrees at a 

small area of the wafer trailing edge around the 2 o’clock position. 
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Figure 7.24 Transient wafer temperature distributions and wafer pad temperature 
differences for three different pad spinning rates at a radial location of 
r/rw=7/8 along the 5 o’clock position. 

 

Figure 7.24 shows the transient substrate temperature variations and wafer–pad 

temperature differences for three characteristic pad spinning rates at the 5 o’clock 

position, for the same conditions of previous temperature contour plots. The transient 
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average wafer temperature results of figure 7.24 under a pad spinning rate of (Ωp=250 

RPM) were found to be 2 degrees lower in general. An overall transient average wafer 

temperature difference of 3.62 degrees was attained under a pad spinning rate of 100 

RPM versus a 1.65 degrees differential acquired under a pad spinning rate of 250 RPM. 

The wafer–pad temperature differences examined range up to 0.43 degrees K or C for the 

pad under a lower spinning rate and up to 0.27 degrees for the pad under a higher 

spinning rate at a dimensionless radial location of r/rw=7/8. Additionally, it was found 

that the wafer–pad temperature differences for a pad spinning rate of 250 RPM were 

lower and more stable compared with a pad spinning rate of 100 RPM, as shown in figure 

7.24. 
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Figure 7.25 Transient wafer heat transfer convection coefficients for three different pad 
spinning rates at a radial location of r/rw=7/8 along the 5 o’clock position. 
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Figure 7.25 show the wafer and pad heat transfer convection coefficients at a 

radial distance of r/rw=7/8 along the 5 o’clock position. The average heat transfer 

convection coefficient of the pad in figure 7.25 under a pad spinning rate of 100, 175, and 

250 RPM at the radial location under study along the 5 o’clock position were equal to 

22.93, 37.91, and 50.19 W/m2K respectively. The average heat transfer convection 

coefficients of the wafer under a pad spinning rate of 100, 175, and 250 RPM at a radial 

location of r/rw=7/8 along the 5 o’clock position were equal to 20.91, 33.86, and 44.53 

W/m2K respectively, as shown in figure 7.25. The results of figure 7.25 showed the 

substantial enhancement of the heat transfer convection coefficients by the increment of 

the pad spinning rate up to 250 RPM. It was found that this effect could double the heat 

transfer removal rate and diminishes the temperature gradient of the pad and wafer 

surfaces between 2 to 4 degrees during the CMP process.  

Present numerical results were compared with the transient experimental test data 

acquired of the pad temperature rise by Mudhivarthi [146]. The pad surface temperature 

rises during polishing experiments at different slurry flow rates, as shown in figure 7.26. 

It can be seen from that figure, that the amount of pad surface temperature decreases with 

increment of slurry flow rates. Figure 7.27 shows present numerical results of the 

transient pad temperature distribution at the leading edge along the 5 o’clock position for 

various slurry flow rates. A comparable trend of the actual pad temperature distributions 

can be seen in figure 7.27. The pad temperature rise under slurry flow rates of 30, 55, and 

75 cc/min correlate with an average margin of 4.05%, 2.84%, and 4.03% respectively. 

Note that numerical predictions are within an average percentage off error of 3.65%. The 

numerical results reveal a better correlation at larger flow rates.  
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Figure 7.26 Experimental results of pad surface temperature rise during copper polish at 
different slurry flow rates from Mudhivarthi [146]. 
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Figure 7.27 Present numerical results of pad temperature rise at the leading edge along 
the 5 o’clock position for three different slurry flow rates at (Ωp=150 RPM, 
Ωc=30 RPM, Tsl=297 K, COF=0.4, P=24.35 kPa, δsl=40 µm, rw=1.9 cm, 
qsl=4.6 to 10.8 kW/m2). 

 



www.manaraa.com

 237 

The factor of working at the micrometer scale under the influence of two spinning 

surfaces about different axes of rotation, the complexity of flow under such type of 

boundary conditions, and the range of flow parameters may contribute to the discrepancy 

between experimental and numerical data. In addition, computational errors can be 

introduced because of round off and discretization of the mesh. Considering these factors, 

the overall comparison with test and numerical results of previous studies is satisfactory. 

The average heat transfer convection coefficients of pad and substrate surfaces from the 

present numerical simulation under the combination of different CMP parameters and 

input heat flux are listed in Table 7.2. 

Table 7.2 Average substrate and pad heat transfer convection coefficients under 
different CMP parameters and variable input heat flux at specific radial 
locations along the surfaces. 
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Chapter 8 Conclusions and Recommendations 

 

 

8.1 Free Liquid Jet Impingement 

8.1.1 Steady State Cooling of Spinning Target 

Local and average Nusselt number and heat transfer coefficient distributions 

showed a strong dependence on the impingement velocity or Reynolds number; as the 

velocity increases, the boundary layer or film thickness decreases and Nusselt number 

increases over the entire solid–fluid interface. In general, the rotational rate diminishes 

the dimensionless solid–fluid interface temperature and increases the local Nusselt 

number distribution. The average Nusselt number attained an almost constant value at 

b/dn ≥ 0.50 for all materials indicating that an optimum thickness design condition has 

been reached. This occurs due to maximum heat redistribution by conduction within the 

solid disk. All five solid materials showed higher maximum temperature values at smaller 

thickness to nozzle diameter ratio. A lower thermal conductivity material showed higher 

local maximum Nusselt number as well as higher average Nusselt number at all studied 

material thicknesses. On the other hand, plate materials with higher thermal conductivity 

maintained a more uniform temperature distribution through the solid–fluid interface and 

facilitated a faster heat transfer rate, lowering the maximum temperature inside the solid 

and at the interface. A lower dimensionless solid–fluid interface temperature distribution 

was achieved for a lower Prandtl number fluid. The correlation for average Nusselt 

number developed under this study may be useful for engineering design.  
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8.1.2 Transient Cooling of Spinning Target 

A number of important conclusions can be derived from the present numerical 

results. The dimensionless interface temperature increases and Nusselt number decreases 

with the progression of the transient from the start–up of heating to the equilibrium 

steady state condition. The location of the maximum Nusselt number can be associated 

with the transition of the flow from the vertical impingement to horizontal displacement 

where the boundary layer starts to develop. A higher Reynolds number increases the 

magnitude of fluid velocity near the solid–fluid interface allowing a quicker dissipation 

of heat with higher flow rate and lower thermal boundary layer thickness. Consequently, 

the time required to reach the steady state decreases and Nusselt number increases with 

Reynolds number. In addition, the maximum temperature inside the solid decreases as the 

Reynolds number increases. In general, the rotational rate diminishes the dimensionless 

solid–fluid interface temperature as well as the time required to reach the steady state 

condition. The average Nusselt number is greater at larger spinning rate or lower Ekman 

number. As the Ekman number decreases from ∞ to 6.62x10–5 the average Nusselt 

number increases by an average of 20.81%. The increment of solid disk thickness creates 

more thermal resistance and provides a more uniform interface temperature due to radial 

heat spreading within the solid. A higher thickness decreases the dimensionless 

maximum temperature at the interface and within the solid and increases the time to reach 

the steady state condition. The average Nusselt number is higher for a thinner disk. The 

magnitude of the temperature non–uniformity and how effectively the heat flows and 

distributes within the material and at the interface is controlled by the thermal 

conductivity of the material. A lower thermal conductivity material such as Constantan 
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maintains a higher average heat transfer coefficient and a higher maximum temperature 

within the solid over the entire transient process. A disk material with higher thermal 

diffusivity reaches the steady state faster. The correlation for average Nusselt number 

during the transient process was developed as a function of Reynolds number, Ekman 

number, thermal conductivity ratio, and Fourier number. This correlation will be useful 

for engineering design. 

8.2 Confined Liquid Jet Impingement  

8.2.1 Steady State Cooling of Stationary Confined Wall with Spinning Target 

The solid–fluid dimensionless interface temperature, the local Nusselt number and 

local heat transfer coefficient shows a strong dependence of the following parameters: 

Reynolds number, rotational rate, solid material properties, and fluid properties. 

Increasing the Reynolds number increases the local heat transfer coefficient distribution 

values over the entire solid–fluid interface. Simultaneously, this effect reduces the solid–

fluid temperature and improves the cooling effectiveness of the process. In general, the 

rotational rate effect increases the local Nusselt number distribution values over the entire 

solid–fluid interface except for a disk under high spinning rate where the thermal 

boundary layer separates from the wall and generates an ineffective cooling. Plate 

materials with a higher thermal conductivity maintained a more uniform temperature 

distribution at the solid–fluid interface. Highest local Nusselt number occurred at the 

highest Prandtl number condition. Correlation for average Nusselt number under 

confined jet impingement cooling of a spinning disk is proposed in terms of Reynolds 

number, Ekman number, Prandtl number, nozzle–to–plate spacing ratio, and thermal 

conductivity ratio. The differences between numerical and predicted values are in the 
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range from –20.36% to +14.47%. The mean value of the error is 7.7%. The numerical 

results compared well with available experimental measurements. 

8.2.2 Steady State Cooling of Spinning Confined Wall with Stationary Target 

The solid–fluid dimensionless interface temperature and local Nusselt number 

showed a strong dependence on Reynolds number, rotational rate, disk thickness, 

impingement height, fluid properties, and solid material properties. The increment of 

Reynolds number increases the local heat transfer coefficient distribution values over the 

entire solid–fluid interface. In general, the rotational rate increases the local Nusselt 

number distribution values over the entire solid–fluid interface for Ek> 1.52x10–4. A 

thicker disk provides a more uniform distribution of interface temperature and heat 

transfer coefficient. As the nozzle to target spacing increases from β=0.25 to 1, the heat 

transfer coefficient decreases. However, at higher spacing (β=2–5) a higher heat removal 

rate is obtained due to an optimal mix of the impinging jet flow with the rotationally 

induced flow. Higher Prandtl number fluids lead to a thinner thermal boundary layer, and 

therefore higher heat transfer coefficient at the interface. Plate materials with higher 

thermal conductivity maintained lower thermal resistance within the solid and therefore 

more uniform temperature distribution results at the interface. Correlation for average 

Nusselt number under spinning confined jet impingement cooling is proposed in terms of 

Reynolds number, Ekman number, disk thickness, nozzle to target spacing, and thermal 

conductivity ratio. The differences between numerical and predicted values are in the 

range from –13.8% to +15.3%. The mean value of the error is equal to 6.8%. The 

numerical results compared reasonably well with available analytical predictions and 

experimental measurements. 
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8.3 Partially–confined Liquid Jet Impingement 

8.3.1 Steady State Cooling of Spinning Target 

The solid–fluid dimensionless interface temperature and local Nusselt number 

showed a strong dependence on Reynolds number, rotational rate, disk thickness, nozzle 

to target spacing or impingement height, plate–to–disk confinement ratio, fluid 

properties, and solid material properties. The increment of Reynolds number increases 

the local heat transfer coefficient distribution over the entire solid–fluid interface. In 

general, rotation increases the local Nusselt number distribution values over the entire 

solid–fluid interface for Ek> 7.08x10–5. A higher disk thickness provides a more uniform 

distribution of interface temperature and heat transfer coefficient. As the nozzle to target 

distance increases from β=0.25 to 1, the existing fluid column between target and 

confinement diminishes the liquid jet momentum and therefore the heat removal rate. A 

decrease in plate to disk confinement ratio increases local Nusselt number at all locations 

in the disk. A higher Prandtl number fluid leads to a thinner thermal boundary layer and 

provides a more effective heat removal rate at the interface. Plate materials with higher 

thermal conductivity maintained lower thermal resistance within the solid and therefore a 

more uniform temperature distribution happens at the interface. A correlation for average 

Nusselt number under partially–confined liquid jet impingement over a spinning target is 

proposed in terms of Reynolds number, Ekman number, dimensionless nozzle to target 

spacing ratio, thermal conductivity ratio and confinement plate to disk radius ratio. The 

differences between numerical and predicted values are in the range from –15.13% to 

+15.61%. The mean value of the error is equal to 6.94%.  
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8.3.2 Steady State Cooling of Spinning Confined Wall and Target 

The following conclusions could be made based on the numerical results of the 

present investigation.  

1. The increment of Reynolds number contributes to a more effective cooling by 

increasing the local heat transfer coefficient over the entire solid–fluid interface. 

2. For Ek1,2> 7.08x10–5, a higher rotational speed enhances the local Nusselt number 

and generates lower temperature over the entire solid–fluid interface. 

3. A higher disk thickness provides more uniform interface temperature and heat 

transfer coefficient. 

4. Heat transfer coefficient increases as the nozzle to target distance decreases from 

β=1.0 to 0.2.  

5. A reduction in plate–to–disk confinement ratio increases the local Nusselt number 

at all locations. 

6. A higher Prandtl number fluid leads to a thinner thermal boundary layer and 

provides a more effective heat removal rate at the solid–fluid interface. 

7. Plate materials with higher thermal conductivity maintain lower thermal 

resistance within the solid and therefore a more uniform temperature distribution 

is achieved at the solid–fluid interface. 

8. A correlation for average Nusselt number is proposed in terms of Reynolds 

number, Ekman numbers (Ek1, Ek2), nozzle to target spacing ratio, thermal 

conductivity ratio and confinement plate to disk radius ratio. The percent 

differences between numerical and predicted values are in the range of –14.76% 
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to +13.08%. The mean deviation of the predicted average Nusselt correlation is 

equal to 6.37%. 

9. The numerical results compared reasonably well with available experimental 

measurements.  

8.3.3 Transient Cooling of Spinning Target 

A number of important conclusions can be made based on the results of the 

present investigation. Local Nusselt number shows a higher value at early stages of the 

transient process due to smaller temperature difference between the liquid jet and disk 

solid–fluid interface. The increment of Reynolds number results in higher fluid velocity 

near the solid–fluid interface that enhances the convective heat transfer rate and reduces 

the solid–fluid interface temperature. Consequently, the duration of the transient heat 

transfer process and the maximum temperature inside the solid decreases as the Reynolds 

number increases. As the Ekman number decreases from ∞ to 7.08x10–5 the average 

Nusselt number increases by an average of 27.47%. As the nozzle to target spacing 

decreases from 1 to 0.25 the average Nusselt number increases by an average of 12.71%. 

The increment of confinement ratio (rp/rd) increases the frictional resistance from the 

confinement disk slowing down the fluid momentum and the convective heat transfer 

rate. The increment of disk thickness decreases the maximum temperature at the interface 

and within the solid and increases the time needed to achieve the steady state condition. 

A lower thermal conductivity material maintains a higher average heat transfer 

coefficient and maximum temperature within the solid over the entire transient process. A 

disk material with higher thermal diffusivity reduces the duration of the transient heat 

transfer process and reaches the steady state faster. The correlation for average Nusselt 
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number during the transient process was developed as a function of confinement ratio, 

thermal conductivity ratio, and dimensionless disk thickness, nozzle to target spacing, 

Ekman number, Reynolds number, and Fourier number. This correlation will be useful 

for engineering design.  

8.4 Chemical Mechanical Polishing Model  

 

8.4.1 Steady State and Transient Process 

 

The steady state and transient three dimensional heat transfer model is developed 

and solved numerically to obtain the pad and wafer surfaces temperature distributions 

along the radial distance from the leading to trailing edge and specific locations of both 

surfaces as part of the transient model. The model results include steady state and 

transient local and average heat transfer convective coefficients of wafer and pad under 

the influences of various CMP parameters along both surfaces and specific locations.  

1. The polishing interface temperatures of pad and substrate and local heat transfer 

coefficient are significantly affected by slurry flow rate, tribological aspects, and 

pad spinning rate at the interface.  

2. The increment of slurry flow rates and the reduction of the friction coefficient 

results in lower pad and wafer surfaces temperature. In most cases the pad and 

wafer surface temperatures are the highest at the trailing edge of the wafer and 

decrease towards the leading edge.  

3. The substrate and pad temperature distributions increase under a higher pressure 

load due to the increment of the heat flux generated per unit area. 
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4. The effect of adding more pressure to the CMP process produce larger 

temperature gradients at the wafer–pad interface as result of more contact to 

contact abrasion mode of the pad with slurry particles and substrate. 

5. The backflow effects increased at lower pad spinning rates, allowing more flow 

recirculation of the slurry and increase the shear forces effect of slurry particles 

along the pad and wafer surfaces. 

6. The increment of the pad spinning rate overcome the frictional and tensional 

forces of the slurry beneath the substrate and pad surfaces. The hotter slurry is 

driven out towards the end of the platen at a faster rate. 

7. The increment of the slurry film thickness provides lower and more uniform 

interface temperatures and heat transfer coefficients across the leading to the 

trailing edge of the control volume under study. 

8. The steady state results reveal that the temperature around the leading edge is 

about 2 to 3 oC lower than the inner section and up to 8.5 oC lower than the wafer 

trailing edge. The leading edge keeps its temperature close to the initial flow rate 

value because fresh, cool slurry enters beneath the polished wafer around its 

perimeter.  

9. A lower heat transfer convection coefficient at a particular location indicates the 

presence of a hot spot or a higher temperature gradient between the incoming 

slurry at the pad or substrate surfaces under transient and steady state conditions. 

10. The heat transfer convection coefficients are higher at the pad surface than the 

substrate surface, which is due to the lower thermal conductivity of the pad that 
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results in a lower temperature gradient between the incoming slurry and pad 

surface under transient and steady state conditions. 

11. The transient results reveal that the temperature around the leading edge is about 

2 to 3 oC lower than the inner section and up to 10 oC lower than the wafer trailing 

edge. The leading edge keeps its temperature close to the initial flow rate value 

because fresh, cool slurry enters beneath the polished wafer around its perimeter. 

12. The minimum heat–transfer slurry–wafer interaction occurs close to the trailing 

edge area. Hot spots can be observed along the trailing edge and some inner 

regions where part of the slurry got trapped due to the emerging rotational flow 

patterns.  

13. The influence of transient temperature of the process with the interaction of the 

chemical abrasive can be one of the reasons for non–uniformity within the wafer 

during the CMP process. 

14. The results presented are critical to understanding how fluid dynamics affects the 

CMP process and can be used to improve the design of more thermal stable pads 

and therefore prolong the life of the pad.  

8.5 Future Work and Recommendations 

All the problems presented in this work have been done as (CFD) numerical 

models with prescribed boundary conditions to study the fluid flow and heat transfer 

phenomena of cooling systems with dimensions that range on the millimeter scale. The 

millimeter scale includes jet size, free surface height, and nozzle to target spacing of jets, 

surfaces confinement, and flow film thickness. The analysis presented shows interesting 

behaviors that can be explored with experiments that involve the design of more efficient 
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and economic cooling systems. Using the study parameters of this investigation for future 

reference it will be useful to correlate different fluids and multiple layer materials or 

coated films, such as polymers with variable properties, diamond coating, and 

polyurethane coatings. It will be useful to: implement computational studies of free, 

partially–confined and confined liquid jet impingement technique in specific cooling of 

electronic applications and compare with present results. The implementation of 

experiments will be ideal to strengthen and support most of the findings of this work.  

In terms of the effect of temperature on the CMP process, this research 

demonstrates that the increase in removal rate during CMP is due to the increased rate of 

the dissolvable surface of copper oxides and hydroxides into the slurry. It is noted that the 

increase in temperature can be used as an index of surface quality. Experimental results 

demonstrate that scratch depth increased with increment of slurry and substrate surface 

temperatures. The temperature profiles of this study revealed that the non–uniformity in 

CMP is a function of a series of dynamic parameters, such as slurry film thickness, pad 

and carrier spinning rates, applied pressure, and slurry flow rate, which control the slurry 

flow patterns and recirculation beneath the substrate. The existence of three distinct 

regimes of temperature effects opens the door to further investigations. The three 

dimensional model of CMP under study has more room to improve. In a future study, it 

will be useful to explore parameters like substrate sizes or radii, inlet to outlet ratio, pad 

groove design, the eccentricity effect of pad to wafer distance, and the thermal properties 

effects of different slurries, pads and substrates. In addition, it will be useful to correlate 

temperature profiles and heat transfer convection coefficients to the index of Material 

Removal Rate (MRR) of substrate.  
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Appendix A: CFD Free Liquid Jet Impingement 

 

 
TITLE (  ) 
FREE SURFACE JET IMPINGEMENT 
 
/ FIGURE GENERATION SECTION 
 
FI–GEN (ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, 
MEDG = 1, MLOO = 1, MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, 
MSOL = 1, COOR = 1, TOLE = 0.0001) 
 
/ POINTS 
 
POINT( ADD, COOR, X = 0, Y = 0 ) 
POINT( ADD, COOR, X = –0.06, Y = 0 ) 
POINT( ADD, COOR, X = –0.24, Y = 0 ) 
POINT( ADD, COOR, X = –0.24, Y = 0.06 ) 
POINT( ADD, COOR, X = –0.16, Y = 0.20 ) 
POINT( ADD, COOR, X = –0.13, Y = 0.38 ) 
POINT( ADD, COOR, X = –0.13, Y = 0.76 ) 
POINT( ADD, COOR, X = –0.06, Y = 0.76 ) 
POINT( ADD, COOR, X = 0, Y = 0.76 ) 
POINT( ADD, COOR, X = 0, Y = 0.38 ) 
POINT( ADD, COOR, X = –0.06, Y = 0.06 ) 
POINT( ADD, COOR, X = –0.06, Y = 0.20 ) 
POINT( ADD, COOR, X = –0.06, Y = 0.38 ) 
POINT( ADD, COOR, X = –0.24, Y = 0.76 ) 
 
/ LINES (1,2,3,4) 
 
POINT( SELE, ID = 1 ) 
POINT( SELE, ID = 2 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 2 ) 
POINT( SELE, ID = 3 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 3 ) 
POINT( SELE, ID = 4 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 4 ) 
POINT( SELE, ID = 5 ) 
POINT( SELE, ID = 6 ) 
CURVE( ADD, ARC ) 
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Appendix A (Continued) 

 

 
CURVE( SELE, ID = 4 ) 
POINT( SELE, ID = 5 ) 
CURVE( SPLI ) 
 
/ LINES (6,7,8,9,10) 
 
POINT( SELE, ID = 6 ) 
POINT( SELE, ID = 7 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 7 ) 
POINT( SELE, ID = 8 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 8 ) 
POINT( SELE, ID = 9 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 9 ) 
POINT( SELE, ID = 10 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 10 ) 
POINT( SELE, ID = 1 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 2 ) 
POINT( SELE, ID = 11 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 11 ) 
POINT( SELE, ID = 12 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 12 ) 
POINT( SELE, ID = 13 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 13 ) 
POINT( SELE, ID = 8 ) 
CURVE( ADD, LINE ) 
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Appendix A (Continued) 

 

 
POINT( SELE, ID = 13 ) 
POINT( SELE, ID = 6 ) 
CURVE( ADD, LINE ) 
 
/ MODEL SURFACE BY POINTS 
 
POINT( SELE,ID = 1 ) 
POINT( SELE,ID = 3 ) 
POINT( SELE,ID = 9 ) 
POINT( SELE,ID = 14 ) 
SURFACE( ADD, POIN, ROWW = 2, NOAD ) 
 
/ MESH EDGES 
 
CURVE( SELE,ID = 1 ) 
MEDGE( ADD, SUCC, INTE = 6, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 2 ) 
MEDGE( ADD, FRST, INTE = 16, RATI = 0.1, 2RAT = 0, PCEN = 
0.5 ) 
CURVE( SELE,ID = 3 ) 
MEDGE( ADD, LSTF, INTE = 6, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 5 ) 
MEDGE( ADD, SUCC, INTE = 14, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 6 ) 
MEDGE( ADD, SUCC, INTE = 18, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 7 ) 
MEDGE( ADD, SUCC, INTE = 38, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 8 ) 
MEDGE( ADD, LSTF, INTE = 16, RATI = 0.1, 2RAT = 0, PCEN = 
0.5 ) 
CURVE( SELE,ID = 9 ) 
MEDGE( ADD, SUCC, INTE = 6, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 10 ) 
MEDGE( ADD, SUCC, INTE = 38, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 11 ) 
MEDGE( ADD, SUCC, INTE = 38, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 12 ) 
MEDGE( ADD, SUCC, INTE = 6, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 13 ) 
MEDGE( ADD, SUCC, INTE = 14, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 14 ) 
MEDGE( ADD, SUCC, INTE = 18, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 15 ) 
MEDGE( ADD, SUCC, INTE = 38, RATI = 0, 2RAT = 0, PCEN = 0 ) 
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Appendix A (Continued) 

 

 
CURVE( SELE,ID = 16 ) 
MEDGE( ADD, FRST, INTE = 16, RATI = 0.1, 2RAT = 0, PCEN = 
0.5 ) 
 
/ MESH LOOPS 
 
/ LOOP 1 
 
CURVE( SELE, ID = 1 ) 
CURVE( SELE, ID = 12 ) 
CURVE( SELE, ID = 13 ) 
CURVE( SELE, ID = 14 ) 
CURVE( SELE, ID = 15 ) 
CURVE( SELE, ID = 9 ) 
CURVE( SELE, ID = 10 ) 
CURVE( SELE, ID = 11 ) 
MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 4, EDG3 = 1, 
EDG4 = 2 )  
 
/ LOOP 2 
 
CURVE( SELE, ID = 3 ) 
CURVE( SELE, ID = 5 ) 
CURVE( SELE, ID = 6 ) 
CURVE( SELE, ID = 16 ) 
CURVE( SELE, ID = 14 ) 
CURVE( SELE, ID = 13 ) 
CURVE( SELE, ID = 12 ) 
CURVE( SELE, ID = 2 ) 
MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 3, EDG2 = 1, EDG3 = 3, 
EDG4 = 1 )  
 
/ LOOP 3 
 
CURVE( SELE, ID = 16 ) 
CURVE( SELE, ID = 7 ) 
CURVE( SELE, ID = 8 ) 
CURVE( SELE, ID = 15 ) 
MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, 
EDG4 = 1 )  
 
/ MESH FACES 
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/ FACE1 
 
SURFACE( SELE, ID = 1 ) 
MLOOP( SELE, ID = 1 ) 
MFACE( ADD ) 
 
/ FACE2 
 
SURFACE( SELE, ID = 1 ) 
MLOOP( SELE, ID = 2 ) 
MFACE( ADD ) 
 
/ FACE3 
 
SURFACE( SELE, ID = 1 ) 
MLOOP( SELE, ID = 3 ) 
MFACE( ADD ) 
 
/ MESHING FEATURES 
 
MFACE( SELE,ID = 1 ) 
ELEMENT( SETD, QUAD, NODE = 4 ) 
MFACE( MESH, MAP, NOSM, ENTI = "silicon" ) 
MFACE( SELE,ID = 2 ) 
MFACE( SELE,ID = 3 ) 
ELEMENT( SETD, QUAD, NODE = 4 ) 
MFACE( MESH, MAP, ENTI ="water" ) 
 
/ MESH MAP ELEMENT ID 
 
ELEMENT( SETD, EDGE, NODE = 2 ) 
MEDGE( SELE,ID = 3 )  
MEDGE( MESH, MAP, ENTI = "inlet" ) 
MEDGE( SELE,ID = 7 ) 
MEDGE( MESH, MAP, ENTI = "outlet" ) 
MEDGE( SELE,ID )  
4 
5 
6 
MEDGE( MESH, MAP, ENTI = "surface" ) 
MEDGE( SELE,ID )  
9 
10 
MEDGE( MESH, MAP, ENTI = "bottom" ) 
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MEDGE( SELE,ID = 2 ) 
MEDGE( MESH, MAP, ENTI = "axis" ) 
MEDGE( SELE,ID )  
1 
8 
MEDGE( MESH, MAP, ENTI = "sides" ) 
MEDGE( SELE,ID )  
11 
12 
13 
14 
MEDGE( MESH, MAP, ENTI = "interface" ) 
END(  ) 
 
/ FEM PROPERTIES OF (SOLID, LIQUID, OR GAS), ENTITY, PROBLEM TYPE 
AND BOUNDARY CONDITION DEFINITION 
 
FIPREP(  ) 
 
/ FLUID CONSTANT PROPERTIES 
 
DENSITY( ADD, SET = "water", CONS = 0.996 ) 
CONDUCTIVITY( ADD, SET = "water", CONS = 0.0014699 ) 
VISCOSITY( ADD, SET = "water", CONS = 0.00798 ) 
SPECIFICHEAT( ADD, SET = "water", CONS = 0.998137 ) 
SURFACETENSION( ADD, SET = "water", CONS = 73 ) 
 
OR 
 
/ FLUID VARIABLE PROPERTIES 
 
DENSITY( ADD, SET = "water", TYP2, CONS = 0.996, 
TEMPERATURE ) 
 
CONDUCTIVITY( ADD, SET = "water", CURVE = 10 ) 
0 37.0 43.33 48.89 54.44 65.55 76.67 87.78 104.4 115.6 
0.00135277247 0.0014699 0.0015224665 0.001539197 
0.0015511472 0.0015750478 0.0015965583 0.0016132887 
0.0016347992 0.0016371893 
 
VISCOSITY( ADD, SET = "water", CURVE = 10 ) 
0 37.0 43.33 48.89 54.44 65.55 76.67 87.78 104.4 115.6  
0.017900 0.00798 0.00616 0.00562 0.00513 0.00430 0.00372 
0.00327 0.00267 0.00244  
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SPECIFICHEAT( ADD, SET = "water", CURVE = 10 ) 
0 37.0 43.33 48.89 54.44 65.55 76.67 87.78 104.4 115.6  
1.009799235 0.998137 0.99760994 0.99770994 0.99880497 
0.99976099 1.00167304 1.003585086 1.007648184  
 
/ MATERIAL PROPERTIES 
 
DENSITY( ADD, SET = "silicon", CONS = 2.33 ) 
CONDUCTIVITY( ADD, SET = "silicon", CONS = 0.334608 ) 
SPECIFICHEAT( ADD, SET = "silicon", CONS = 0.17006 ) 
 
/ ENTITY DEFINITION 
 
ENTITY( ADD, NAME = "water", FLUI, PROP = "water" ) 
ENTITY( ADD, NAME = "inlet", PLOT ) 
ENTITY( ADD, NAME = "outlet", PLOT ) 
ENTITY( ADD, NAME = "surface", SURF, DEPT = 15, SPIN, STRA, 
ANG1 = 10, ANG2 = 180 ) 
ENTITY( ADD, NAME = "bottom", PLOT ) 
ENTITY( ADD, NAME = "axis", PLOT ) 
ENTITY( ADD, NAME = "silicon", SOLI, PROP = "silicon" ) 
ENTITY( ADD, NAME = "sides", PLOT ) 
ENTITY( ADD, NAME = "interface”, PLOT, ATTA= "water", NATT 
= "silicon") 
BODYFORCE( ADD, CONS, FX = 981, FY = 0, FZ = 0 ) 
PRESSURE( ADD, MIXE = 1e–11, DISC ) 
 
/ RELAXATION FACTORS (UR, UZ, Uθ, PRESSURE, TEMP, SURFACE) 
 
OPTIONS (ADD, UPWI ) 
UPWINDING (ADD, STRE ) 
RELAXATION(  ) 
  0.3, 0.3, 0.3, 0, 0.05, 0.25 
 
/ BOUNDARY CONDITIONS 
 
BCNODE( ADD, COOR, NODE = 24 ) 
BCNODE( ADD, SURF, NODE = 24, ZERO ) 
BCNODE( ADD, VELO, ENTI = "bottom", ZERO ) 
BCNODE( ADD, URC, ENTI = "inlet", ZERO ) 
BCNODE( ADD, UZC, ENTI = "inlet", CONS = 80.15 ) 
BCNODE( ADD, URC, ENTI = "axis", ZERO ) 
BCNODE( ADD, VELO, ENTI = "interface", ZERO ) 
BCNODE( ADD, VELO, ENTI = "sides", ZERO ) 
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BCNODE( ADD, VELO, NODE = 24, ZERO ) 
BCNODE( ADD, UT, NODE = 24, ZERO ) 
BCNODE( ADD, TEMP, ENTI = "inlet", CONS = 37 ) 
BCFLUX( ADD, HEAT, ENTI = "bottom", CONS = 5.971 ) 
BCNODE(UTHETA,POLYNOMIAL=1,ENTITY="silicon") 
0 44.5  0 1 0 
 
/ INITIAL CONDITION 
 
ICNODE( ADD, URC, ENTI = "water", CONS = 30  ) 
 
/ MINIMUM TEMPERATURE 
 
CLIPPING( ADD, MINI ) 
    0,     0,     0,     0,    37,     0 
 
/ PROBLEM DESCRIPTION AND METHOD 
 
PROBLEM ( ADD, CYLI, INCO, TRAN, LAMI, NONL, NEWT, MOME, 
FREE, SING ) 
DATAPRINT( ADD, CONT ) 
EXECUTION( ADD, NEWJ ) 
PRINTOUT( ADD, NONE, BOUN ) 
 
/ METHOD TYPE FOR VARIABLE AND CONSTANT PROPERTIES 
 
SOLUTION( ADD, N.R. = 50, KINE = 25, VELC = 1e–4, RESC = 
1e–4, SURF = 1e–3 ) 
 
TIMEINTEGRATION( ADD, BACK, NSTE = 1000, TSTA = 0, DT = 1e–
8, VARI, WIND = 9, NOFI = 10 ) 
END(  ) 
 
/ INPUT FILE GENERATION AND RUN 
 
CREATE( FISO ) 
RUN( FISOLV, IDEN = "EXAMPLE1", BACK, AT = "", TIME = 

"NOW", COMP ) 
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TITLE(  ) 
CONFINED JET IMPINGEMENT WITH SPINNING TARGET OR SPINNING 
CONFINED WALL 
 
/ FIGURE GENERATION SECTION 
FI–GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, 
MEDG = 1, MLOO = 1, MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, 
MSOL = 1, COOR = 1, TOLE = 1e–05 ) 
 
/ POINTS 
 
POINT( ADD, COOR, X = 0, Y = 0 ) 
POINT( ADD, COOR, X = –0.06, Y = 0 ) 
POINT( ADD, COOR, X = –0.35, Y = 0 ) 
POINT( ADD, COOR, X = –0.35, Y =0.06 ) 
POINT( ADD, COOR, X = –0.35, Y = 0.76 ) 
POINT( ADD, COOR, X = –0.06, Y = 0.76 ) 
POINT( ADD, COOR, X = 0, Y = 0.76 ) 
POINT( ADD, COOR, X = 0, Y =0.06 ) 
POINT( ADD, COOR, X = –0.06, Y =0.06 ) 
 
/ LINES (1,2,3) 
 
POINT( SELE,ID = 1 ) 
POINT( SELE,ID = 2 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE,ID = 2 ) 
POINT( SELE,ID = 3 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE,ID = 3 ) 
POINT( SELE,ID = 4 ) 
CURVE( ADD, LINE ) 
 
/ LINES (4,5,6) 
 
POINT( SELE,ID = 4 ) 
POINT( SELE,ID = 5 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE,ID = 5 ) 
POINT( SELE,ID = 6 ) 
CURVE( ADD, LINE ) 
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POINT( SELE,ID = 6 ) 
POINT( SELE,ID = 7 ) 
CURVE( ADD, LINE ) 
 
/ LINES (7,8,9,10) 
POINT( SELE,ID = 7 ) 
POINT( SELE,ID = 8 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE,ID = 8 ) 
POINT( SELE,ID = 1 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE,ID = 2 ) 
POINT( SELE,ID = 9 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE,ID = 9 ) 
POINT( SELE,ID = 6 ) 
CURVE( ADD, LINE ) 
 
/ MODEL SURFACE BY POINTS  
 
POINT( SELE,ID = 1 ) 
POINT( SELE,ID = 3 ) 
POINT( SELE,ID = 7 ) 
POINT( SELE,ID = 5 ) 
SURFACE(ADD, POIN,ROWW = 2 ) 
 
/ MESH EDGES 
 
CURVE( SELE,ID = 1 ) 
MEDGE( ADD, SUCC, INTE = 6, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 2 ) 
MEDGE( ADD, FRST, INTE = 35, RATI = 0.1, 2RAT = 0, PCEN = 
0.5 ) 
CURVE( SELE,ID = 3 ) 
MEDGE( ADD, SUCC, INTE = 6, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 4 ) 
MEDGE( ADD, SUCC, INTE = 73, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 5 ) 
MEDGE( ADD, LSTF, INTE = 35, RATI = 0.1, 2RAT = 0, PCEN = 
0.5 ) 
CURVE( SELE,ID = 6 ) 
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MEDGE( ADD, SUCC, INTE = 6, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 7 ) 
MEDGE( ADD, SUCC, INTE = 73, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 8 ) 
MEDGE( ADD, SUCC, INTE = 6, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 9 ) 
MEDGE( ADD, SUCC, INTE = 6, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE,ID = 10 ) 
MEDGE( ADD, SUCC, INTE = 73, RATI = 0, 2RAT = 0, PCEN = 0 ) 
 
/ MESH LOOPS 
 
/ LOOP 1 
 
CURVE( SELE, ID = 1 ) 
CURVE( SELE, ID = 9 ) 
CURVE( SELE, ID = 10 ) 
CURVE( SELE, ID = 6 ) 
CURVE( SELE, ID = 7 ) 
CURVE( SELE, ID = 8 ) 
MLOOP( ADD,MAP, EDG1 = 1, EDG2 = 2,EDG3 = 1, EDG4 = 2 ) 
 
/ LOOP 2 
 
CURVE( SELE, ID = 2 ) 
CURVE( SELE, ID = 3 ) 
CURVE( SELE, ID = 4 ) 
CURVE( SELE, ID = 5 )  
CURVE( SELE, ID = 10 ) 
CURVE( SELE, ID = 9 ) 
MLOOP( ADD,MAP, EDG1 = 1, EDG2 = 2,EDG3 = 1, EDG4 = 2 ) 
 
/ MESH FACES 
 
/ FACE1 
SURFACE( SELE, ID = 1 ) 
MLOOP( SELE, ID = 1 ) 
MFACE( ADD ) 
 
/ FACE2 
SURFACE( SELE, ID = 1 ) 
MLOOP( SELE, ID = 2 ) 
MFACE( ADD ) 
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/ MESHING FEATURES 
 
MFACE( SELE,ID = 1 ) 
MFACE( MESH, MAP, NOSM, ENTI = "silicon" ) 
MFACE( SELE,ID = 2 ) 
MFACE( MESH, MAP, ENTI ="water" ) 
 
/ MESH MAP ELEMENT ID 
 
ELEMENT( SETD, EDGE, NODE = 2 ) 
MEDGE( SELE,ID = 3 )  
MEDGE( MESH, MAP, ENTI = "inlet" ) 
MEDGE( SELE,ID = 5 ) 
MEDGE( MESH, MAP, ENTI = "outlet" ) 
MEDGE( SELE,ID = 4 )  
MEDGE( MESH, MAP, ENTI = "top" ) 
MEDGE( SELE,ID ) 
7 
8 
MEDGE( MESH, MAP, ENTI = "bottom" ) 
MEDGE( SELE,ID = 2 )  
MEDGE( MESH, MAP, ENTI = "axis" ) 
MEDGE( SELE,ID ) 
1 
6 
MEDGE( MESH, MAP, ENTI = "sides" ) 
 
MEDGE( SELE,ID ) 
9 
10 
MEDGE( MESH, MAP, ENTI = "interface" ) 
END(  ) 
 
/ FEM PROPERTIES OF (SOLID, LIQUID, OR GAS), ENTITY, PROBLEM TYPE 
AND BOUNDARY CONDITION DEFINITION 
 
FIPREP(  ) 
 
/ CONSTANT FLUID PROPERTIES 
DENSITY( ADD, SET = "water", CONS = 0.996 ) 
CONDUCTIVITY( ADD, SET = "water", CONS = 0.0014699 ) 
VISCOSITY( ADD, SET = "water", CONS = 0.00798 ) 
SPECIFICHEAT( ADD, SET = "water", CONS = 0.998137 ) 
SURFACETENSION( ADD, SET = "water", CONS = 73 ) 
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/ FLUID VARIABLE PROPERTIES 
 
DENSITY (ADD, SET = "water", TYP2, CONS = 0.996, TEMP ) 
 
CONDUCTIVITY (ADD, SET = "water", CURVE = 10 ) 
0 37.0 43.33 48.89 54.44 65.55 76.67 87.78 104.4 115.6 
0.00135277247 0.0014699 0.0015224665 0.001539197 
0.0015511472 0.0015750478 0.0015965583 0.0016132887 
0.0016347992 0.0016371893 
 
VISCOSITY (ADD, SET = "water", CURVE = 10 ) 
0 37.0 43.33 48.89 54.44 65.55 76.67 87.78 104.4 115.6  
0.017900 0.00798 0.00616 0.00562 0.00513 0.00430 0.00372 
0.00327 0.00267 0.00244  
 
SPECIFICHEAT (ADD, SET = "water", CURVE = 10 ) 
0 37.0 43.33 48.89 54.44 65.55 76.67 87.78 104.4 115.6  
1.009799235 0.998137 0.99760994 0.99770994 0.99880497 
0.99976099 1.00167304 1.003585086 1.007648184  
 
/ MATERIAL PROPERTIES 
 
DENSITY(ADD, SET = "silicon", CONS = 2.33 ) 
CONDUCTIVITY( ADD, SET = "silicon", CONS = 0.334608 ) 
SPECIFICHEAT( ADD, SET = "silicon", CONS = 0.17006 ) 
 
/ ENTITY DEFINITION 
 
ENTITY(ADD, NAME = "water", FLUI, PROP = "water" ) 
ENTITY(ADD, NAME = "inlet", PLOT ) 
ENTITY(ADD, NAME = "outlet", PLOT ) 
ENTITY(ADD, NAME = "top", PLOT ) 
ENTITY(ADD, NAME = "bottom", PLOT ) 
ENTITY(ADD, NAME = "axis", PLOT ) 
ENTITY(ADD, NAME = "silicon", SOLI, PROP = "silicon" ) 
ENTITY(ADD, NAME = "sides", PLOT ) 
ENTITY(ADD, NAME = "interface", PLOT, ATTA = "water", NATT 
= "silicon") 
 
/ RELAXATION FACTORS (UR, UZ, Uθ, PRESSURE, TEMP, SURFACE) 
OPTIONS (ADD, UPWI ) 
UPWINDING (ADD, STRE ) 
RELAXATION(  ) 
  0.6, 0.6, 0.6, 0, 0.2, 0.4 
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/BOUNDARY CONDITIONS 
 
BCNODE( ADD, VELO, ENTI = "top", ZERO ) 
BCNODE( ADD, VELO, ENTI = "bottom", ZERO ) 
BCNODE( ADD, URC, ENTI = "inlet", ZERO ) 
BCNODE( ADD, UZC, ENTI = "inlet", CONS = 100.1506  ) 
BCNODE( ADD, URC, ENTI = "axis", ZERO ) 
BCNODE( ADD, VELO, ENTI = "interface", ZERO ) 
BCNODE( ADD, VELO, ENTI = "sides", ZERO ) 
BCNODE( ADD, TEMP, ENTI = "inlet", CONS = 37 ) 
BCFLUX( ADD, HEAT, ENTI = "bottom", CONS = 5.971 ) 
 
/ SPINNING TARGET  
BCNODE( UTHE,POLY = 1, ENTI = "silicon" ) 
0 13.09 0 1 0 
/OR 
/ SPINNING CONFINED WALL 
BCNODE( UTHE,POLY = 1, ENTI = "top" ) 
0 13.09 0 1 0 
 
/ MINIMUN TEMPERATURE 
CLIPPING( ADD, MINI ) 
    0,     0,     0,     0,    37,     0 
 
/ PROBLEM DESCRIPTION AND METHOD 
 
PROBLEM (ADD, CYLI,INCO, STEA, LAMI, NONL, NEWT, MOME, 
ENER,FIXE,SING ) 
DATAPRINT( ADD, CONT ) 
EXECUTION( ADD, NEWJ ) 
PRINTOUT( ADD, NONE, BOUN ) 
 
/ METHOD TYPE FOR VARIABLE PROPERTIES 
SOLUTION( ADD, SEGR = 1200, VELC = 1e–4, RESC = 1e–5 ) 
 
/ METHOD TYPE FOR CONSTANT PROPERTIES 
SOLUTION( ADD, S.S. = 100, VELC = 1e–4, RESC = 1e–4 ) 
END(  ) 
 
/INPUT FILE GENERATION AND RUN 
 
CREATE( FISO ) 
RUN( FISOLV, IDEN = "EXAMPLE2", BACK, AT = "", TIME = 
"NOW", COMP 
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TITLE(  ) 
PARTIALLY CONFINED JET IMPINGEMENT WITH SPINNING TARGET 
AND/OR SPINNING CONFINED WALL 
 
/ FIGURE GENERATION SECTION 
 
FI–GEN( ELEM = 1, POIN = 1, CURV = 1, SURF = 1, NODE = 0, 
MEDG = 1, MLOO = 1, MFAC = 1, BEDG = 1, SPAV = 1, MSHE = 1, 
MSOL = 1, COOR = 1, TOLE = 0.0001 ) 
 

/ POINTS 
 
POINT( ADD, COOR, X = 0, Y = 0 ) 
POINT( ADD, COOR, X = –0.06, Y = 0 ) 
POINT( ADD, COOR, X = –0.18, Y = 0 ) 
POINT( ADD, COOR, X = –0.18, Y = 0.06 ) 
POINT( ADD, COOR, X = –0.18, Y = 0.36 ) 
POINT( ADD, COOR, X = –0.145, Y = 0.52 ) 
POINT( ADD, COOR, X = –0.14, Y = 0.6 ) 
POINT( ADD, COOR, X = –0.06, Y = 0.6 ) 
POINT( ADD, COOR, X = 0, Y = 0.6 ) 
POINT( ADD, COOR, X = 0, Y = 0.36 ) 
POINT( ADD, COOR, X = 0, Y = 0.06 ) 
POINT( ADD, COOR, X = –0.06, Y = 0.06 ) 
POINT( ADD, COOR, X = –0.06, Y = 0.36 ) 
POINT( ADD, COOR, X = –0.18, Y = 0.6 ) 
 

/ LINES (1,2,3,4,5,6,7) 
 

POINT( SELE, ID = 1 ) 
POINT( SELE, ID = 2 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 2 ) 
POINT( SELE, ID = 3 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 3 ) 
POINT( SELE, ID = 4 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 4 ) 
POINT( SELE, ID = 5 ) 
CURVE( ADD, LINE ) 
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POINT( SELE, ID = 5 ) 
POINT( SELE, ID = 6 ) 
POINT( SELE, ID = 7 ) 
CURVE( ADD, ARC ) 
 
POINT( SELE, ID = 7 ) 
POINT( SELE, ID = 8 ) 
CURVE( ADD, LINE ) 
 
/ LINES (8,9,10,11,12,13,14) 
 
POINT( SELE, ID = 8 ) 
POINT( SELE, ID = 9 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 9 ) 
POINT( SELE, ID = 10 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 10 ) 
POINT( SELE, ID = 11 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 11 ) 
POINT( SELE, ID = 1 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 2 ) 
POINT( SELE, ID = 12 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 12 ) 
POINT( SELE, ID = 13 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 13 ) 
POINT( SELE, ID = 8 ) 
CURVE( ADD, LINE ) 
 
POINT( SELE, ID = 13 ) 
POINT( SELE, ID = 5 ) 
CURVE( ADD, LINE ) 
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/ MODEL SURFACE BY POINTS 
 
POINT( SELE, ID = 1 ) 
POINT( SELE, ID = 3 ) 
POINT( SELE, ID = 9 ) 
POINT( SELE, ID = 14 ) 
SURFACE( ADD, POIN, ROWW = 2, NOAD ) 
 
/ MESH EDGES 
 
CURVE( SELE, ID = 1 ) 
MEDGE( ADD, SUCC, INTE = 12, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 2 ) 
MEDGE( ADD, FRST, INTE = 16, RATI = 0.1, 2RAT = 0, PCEN = 
0.5 ) 
CURVE( SELE, ID = 3 ) 
MEDGE( ADD, SUCC, INTE = 9, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 4 ) 
MEDGE( ADD, SUCC, INTE = 30, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 5 ) 
MEDGE( ADD, SUCC,INTE = 24, RATI = 1, 2RAT = 1.05, PCEN = 
0.5 ) 
CURVE( SELE, ID = 6 ) 
MEDGE( ADD, LSTF, INTE = 16, RATI = 0.1, 2RAT = 0, PCEN = 
0.5 ) 
CURVE( SELE, ID = 7 ) 
MEDGE( ADD, SUCC, INTE = 12, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 8 ) 
MEDGE( ADD, SUCC, INTE = 24, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 9 ) 
MEDGE( ADD, SUCC, INTE = 30, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 10 ) 
MEDGE( ADD, SUCC, INTE = 9, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 11 ) 
MEDGE( ADD, SUCC, INTE = 9, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 12 ) 
MEDGE( ADD, SUCC, INTE = 30, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 13 ) 
MEDGE( ADD, SUCC, INTE = 24, RATI = 0, 2RAT = 0, PCEN = 0 ) 
CURVE( SELE, ID = 14 ) 
MEDGE( ADD, FRST, INTE = 16, RATI = 0.1, 2RAT = 0, PCEN = 
0.5 ) 
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/ MESH LOOPS 
 
/ LOOP 1 
 
CURVE( SELE, ID = 1 ) 
CURVE( SELE, ID = 11 ) 
CURVE( SELE, ID = 12 ) 
CURVE( SELE, ID = 13 ) 
CURVE( SELE, ID = 7 ) 
CURVE( SELE, ID = 8 ) 
CURVE( SELE, ID = 9 ) 
CURVE( SELE, ID = 10 ) 
MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 3, EDG3 = 1, 
EDG4 = 3 ) 
 
/ LOOP 2 
 
CURVE( SELE, ID = 2 ) 
CURVE( SELE, ID = 3 ) 
CURVE( SELE, ID = 4 ) 
CURVE( SELE, ID = 14 ) 
CURVE( SELE, ID = 12 ) 
CURVE( SELE, ID = 11 ) 
MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 2, EDG3 = 1, 
EDG4 = 2 ) 
 
/ LOOP 3 
 
CURVE( SELE, ID = 14 ) 
CURVE( SELE, ID = 5 ) 
CURVE( SELE, ID = 6 ) 
CURVE( SELE, ID = 13 ) 
MLOOP( ADD, MAP, VISI, NOSH, EDG1 = 1, EDG2 = 1, EDG3 = 1, 
EDG4 = 1 ) 
 
/ MESH FACES 
 
/ FACE1 
 
SURFACE( SELE, ID = 1 ) 
MLOOP( SELE, ID = 1 ) 
MFACE( ADD ) 
 
 



www.manaraa.com

 281 

Appendix C (Continued) 

 

/ FACE 2 
 
SURFACE( SELE, ID = 1 ) 
MLOOP( SELE, ID = 2 ) 
MFACE( ADD ) 
 
/ FACE3 
 
SURFACE( SELE, ID = 1 ) 
MLOOP( SELE, ID = 3 ) 
MFACE( ADD ) 
 
/ MESHING FEATURES 
 
MFACE( SELE, ID = 1 ) 
ELEMENT( SETD, QUAD, NODE = 4 ) 
MFACE( MESH, MAP, NOSM, ENTI = "silicon" ) 
MFACE( SELE, ID = 2 ) 
MFACE( SELE, ID = 3 ) 
ELEMENT( SETD, QUAD, NODE = 4 ) 
MFACE( MESH, MAP, ENTI = "water" ) 
 
/ MESH MAP ELEMENT ID 
 
ELEMENT( SETD, EDGE, NODE = 2 ) 
MEDGE( SELE, ID ) 
    1 
    7 
MEDGE( MESH, MAP, ENTI = "sides" ) 
MEDGE( SELE, ID = 2 ) 
MEDGE( MESH, MAP, ENTI = "axis" ) 
MEDGE( SELE, ID = 3 ) 
MEDGE( MESH, MAP, ENTI = "inlet" ) 
MEDGE( SELE, ID = 4 ) 
MEDGE( MESH, MAP, ENTI = "top" ) 
MEDGE( SELE, ID = 5 ) 
MEDGE( MESH, MAP, ENTI = "surface" ) 
MEDGE( SELE, ID = 6 ) 
MEDGE( MESH, MAP, ENTI = "outlet" ) 
MEDGE( SELE, ID ) 
   8 
   9 
   10 
MEDGE( MESH, MAP, ENTI = "bottom" ) 
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MEDGE( SELE, ID ) 
   11 
   12 
   13 
MEDGE( MESH, MAP, ENTI = "interface" ) 
END(  ) 
 
/ FEM PROPERTIES OF (SOLID, LIQUID, OR GAS), ENTITY, PROBLEM TYPE 
AND BOUNDARY CONDITION DEFINITION 
 
FIPREP(  ) 
 
/ FLUID VARIABLE PROPERTIES 
 
DENSITY (ADD, SET = "water", TYP2, CONS = 0.996, TEMP ) 
 
CONDUCTIVITY (ADD, SET = "water", CURVE = 10 ) 
0 37.0 43.33 48.89 54.44 65.55 76.67 87.78 104.4 115.6 
0.00135277247 0.0014699 0.0015224665 0.001539197 
0.0015511472 0.0015750478 0.0015965583 0.0016132887 
0.0016347992 0.0016371893 
 
VISCOSITY (ADD, SET = "water", CURVE = 10 ) 
0 37.0 43.33 48.89 54.44 65.55 76.67 87.78 104.4 115.6  
0.017900 0.00798 0.00616 0.00562 0.00513 0.00430 0.00372 
0.00327 0.00267 0.00244  
 
SPECIFICHEAT (ADD, SET = "water", CURVE = 10 ) 
0 37.0 43.33 48.89 54.44 65.55 76.67 87.78 104.4 115.6  
1.009799235 0.998137 0.99760994 0.99770994 0.99880497 
0.99976099 1.00167304 1.003585086 1.007648184  
 
/ FLUID CONSTANT PROPERTIES 
 
DENSITY( ADD, SET = "water", CONS = 0.996 ) 
CONDUCTIVITY( ADD, SET = "water", CONS = 0.0014699 ) 
VISCOSITY( ADD, SET = "water", CONS = 0.00798 ) 
SPECIFICHEAT( ADD, SET = "water", CONS = 0.998137 ) 
SURFACETENSION( ADD, SET = "water", CONS = 73 ) 
 
/ MATERIAL PROPERTIES 
DENSITY( ADD, SET = "silicon", CONS = 2.33 ) 
CONDUCTIVITY( ADD, SET = "silicon", CONS = 0.334608 ) 
SPECIFICHEAT( ADD, SET = "silicon", CONS = 0.17006 ) 



www.manaraa.com

 283 

Appendix C (Continued) 

 

/ ENTITY DEFINITION 
 
ENTITY( ADD, NAME = "water", FLUI, PROP = "water" ) 
ENTITY( ADD, NAME = "inlet", PLOT ) 
ENTITY( ADD, NAME = "outlet", PLOT ) 
ENTITY( ADD, NAME = "surface", SURF, DEPT = 17, SPIN, STRA, 
ANG1 = 330, 
ANG2 = 260 ) 
ENTITY( ADD, NAME = "bottom", PLOT ) 
ENTITY( ADD, NAME = "top", PLOT ) 
ENTITY( ADD, NAME = "axis", PLOT ) 
ENTITY( ADD, NAME = "silicon", SOLI, PROP = "silicon" ) 
ENTITY( ADD, NAME = "sides", PLOT ) 
ENTITY( ADD, NAME = "interface", PLOT,ATTA = "water", NATT 
= "silicon") 
BODYFORCE( ADD, CONS, FX = 981, FY = 0, FZ = 0 ) 
PRESSURE( ADD, MIXE = 1e–11, DISC ) 
 
/ RELAXATION FACTORS (UR, UZ, Uθ, PRESSURE, TEMP, SURFACE) 
 
OPTIONS( ADD, UPWI ) 
UPWINDING( ADD, STRE ) 
RELAXATION(  ) 
  0.3, 0.3, 0.3, 0, 0.05, 0.25 
 
/ BOUNDARY CONDITIONS 
 
BCNODE( ADD, COOR, NODE = 39 ) 
BCNODE( ADD, SURF, NODE = 39, ZERO ) 
BCNODE( ADD, VELO, ENTI = "bottom", ZERO ) 
BCNODE( ADD, VELO, ENTI = "top", ZERO ) 
BCNODE( ADD, URC, ENTI = "inlet", ZERO ) 
BCNODE( ADD, UZC, ENTI = "inlet", CONS = 50.07531 ) 
BCNODE( ADD, URC, ENTI = "axis", ZERO ) 
BCNODE( ADD, VELO, ENTI = "interface", ZERO ) 
BCNODE( ADD, VELO, ENTI = "sides", ZERO ) 
BCNODE( ADD, UT, NODE = 39, ZERO ) 
BCNODE( ADD, TEMP, ENTI = "inlet", CONS = 37 ) 
BCFLUX( ADD, HEAT, ENTI = "bottom", CONS = 2.9855 ) 
 
/ SPINNING TARGET  
 
BCNODE( UTHE, POLY = 1, ENTI = "silicon" ) 
    0, 13.09,     0,     1,     0 
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/AND/OR 
 
/ SPINNING CONFINED WALL 
 
BCNODE( UTHE, POLY = 1, ENTI = "top" ) 
    0, 26.18,     0,     1,     0 
 
/ MINIMUM TEMPERATURE 
 
CLIPPING( ADD, MINI ) 
  0,     0,    0,     0,    37,     0 
 
/ INITIAL CONDITIONS 
 
ICNODE( VELO, STOKES ) 
ICNODE( ADD, URC, ENTI = "water", CONS = 45 ) 
ICNODE( ADD, UTHE, ENTI = "water", CONS = 5.333 ) 
 
/ PROBLEM DESCRIPTION AND METHOD 
 
DATAPRINT( ADD, CONT ) 
EXECUTION( ADD, NEWJOB  ) 
 
/ TIMESTEP RESTART DATA BASE INPUT 
 
EXECUTION( NEWJ, RSTEP = 220 ) 
PRINTOUT( ADD, NONE, BOUN ) 
PROBLEM(ADD, CYLI,INCO, TRAN, LAMI, NONL, NEWT, MOME, ENER, 
FREE, SING) 
SOLUTION( ADD, N.R. = 50, KINE = 20, VELC = 1e–4, RESC = 
1e–4, SURF = 0.001 ) 
TIMEINTEGRATION( ADD, BACK, NSTE = 3001, TSTA = 0, DT = 1e–
05, VARI, WIND = 1, NOFI = 15 ) 
POSTPROCESS ( NBLOCKS = 3 ) 
1 601 75 
601 1501 1 
1501 3001 1 
END(  ) 
 
/ INPUT FILE GENERATION AND RUN 
 
CREATE( FISO ) 
RUN( FISOLV, IDEN = "EXAMPLE3", BACK, AT = "", TIME = 
"NOW", COMP ) 
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/ RESTART CONDITION FROM PREVIOUS RESULTS 
 
RUN( FISOLV, IDEN = "EXAMPLE4", BACK, RESTART = 
"EXAMPLE3.FDPOST" ) 
 
/OR 
 
FILES( RENAME, FROM = "EXAMPLE3.FDPOST", TO = " 
EXAMPLE4.FDREST" ) 
FILES( RENAME, FROM = " EXAMPLE3.FDSTAT", TO = " 
EXAMPLE4S.FDSTAT" ) 
 
ICNODE( VELOCITY, READ ) 
ICNODE( TEMP, READ ) 
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/ JOURNAL FILE FOR GAMBIT 2.3.16, DATABASE 2.3.14  
 
/ IDENTIFIER "G04" 
 
reset 
solver select "FIDAP" 
 
/ VERTICES  
 
vertex create coordinates –0.004 –0.477 0 
vertex create coordinates –0.004 –0.287 0 
vertex create coordinates –0.004 –0.477 –0.19 
vertex create coordinates –0.004 –0.477 0.19 
vertex create coordinates –0.004 –0.667 0 
vertex create coordinates –0.004 –0.382 0 
vertex create coordinates –0.004 –0.477 0.095 
vertex create coordinates –0.004 –0.477 –0.095 
vertex create coordinates –0.004 –0.572 0 
coordinate create cartesian oldsystem "c_sys.1" offset –
0.004 –0.477 0 axis1 \ 
  "x" angle1 0 axis2 "y" angle2 0 axis3 "z" angle3 0 
rotation 
 
/ EDGES  
 
edge create center2points "vertex.1" "vertex.2" "vertex.3" 
minarc arc 
edge create center2points "vertex.1" "vertex.2" "vertex.4" 
minarc arc 
edge create center2points "vertex.1" "vertex.3" "vertex.5" 
minarc arc 
edge create center2points "vertex.1" "vertex.5" "vertex.4" 
minarc arc 
edge create straight "vertex.6" "vertex.7" "vertex.9" 
"vertex.8" 
edge create straight "vertex.8" "vertex.6" 
edge create straight "vertex.6" "vertex.2" 
edge create straight "vertex.8" "vertex.3" 
edge create straight "vertex.9" "vertex.5" 
edge create straight "vertex.7" "vertex.4" 
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/ FACES  
 
face create wireframe "edge.1" "edge.9" "edge.8" "edge.10" 
real 
face create wireframe "edge.2" "edge.12" "edge.5" "edge.9" 
real 
face create wireframe "edge.3" "edge.10" "edge.7" "edge.11" 
real 
face create wireframe "edge.4" "edge.11" "edge.6" "edge.12" 
real 
face create wireframe "edge.8" "edge.5" "edge.6" "edge.7" 
real 
 
/ VOLUMES  
 
volume create translate "face.1" "face.2" "face.3" "face.4" 
"face.5" vector \ 
  0.002 0 0 
save 
volume create translate "face.18" "face.23" "face.13" 
"face.8" "face.27" \ 
  vector 0.002 0 0 
save 
 
/ MESH INTERVALS 
 
undo begingroup 
edge picklink "edge.49" "edge.35" "edge.57" "edge.27" 
"edge.19" "edge.60" \ "edge.14" "edge.44" "edge.11" 
"edge.12" "edge.9" "edge.10" 
edge mesh "edge.44" "edge.14" "edge.10" "edge.60" "edge.19" 
"edge.9" \"edge.12" "edge.27" "edge.57" "edge.11" "edge.35" 
"edge.49" successive \ 
  ratio1 1 intervals 5 
undo endgroup 
undo begingroup 
edge picklink "edge.69" "edge.17" "edge.62" "edge.24" 
"edge.54" "edge.40" \ 
  "edge.47" "edge.33" "edge.8" "edge.5" "edge.6" "edge.56" 
"edge.42" "edge.4" \ 
  "edge.64" "edge.26" "edge.2" "edge.67" "edge.15" "edge.1" 
"edge.45" \"edge.31" "edge.3" "edge.7" 
edge mesh "edge.7" "edge.33" "edge.47" "edge.3" "edge.31" 
"edge.45" "edge.1" \ 
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  "edge.15" "edge.67" "edge.2" "edge.26" "edge.64" "edge.4" 
"edge.42" \ 
  "edge.56" "edge.6" "edge.40" "edge.54" "edge.5" "edge.24" 
"edge.62" \ 
  "edge.8" "edge.17" "edge.69" successive ratio1 1 
intervals 8 
edge picklink "edge.36" "edge.25" "edge.18" "edge.20" 
"edge.28" "edge.13" \ 
  "edge.16" "edge.34" 
edge mesh "edge.34" "edge.16" "edge.13" "edge.28" "edge.20" 
"edge.18" \ 
  "edge.25" "edge.36" successive ratio1 1 intervals 2 
undo endgroup 
undo begingroup 
edge picklink "edge.61" "edge.59" "edge.43" "edge.46" 
"edge.58" "edge.55" \ 
  "edge.50" "edge.48" 
edge mesh "edge.48" "edge.50" "edge.55" "edge.58" "edge.46" 
"edge.43" \ 
  "edge.59" "edge.61" successive ratio1 1 intervals 2 
undo endgroup 
 
/ MESH VOLUME 
 
volume mesh "volume.1" "volume.2" "volume.3" "volume.4" 
"volume.5" "volume.6" \ 
  "volume.7" "volume.8" "volume.9" "volume.10" map size 1 
physics create "water" ctype "FLUID" volume "volume.1" 
"volume.2" "volume.3" \ 
  "volume.4" "volume.5" "volume.6" "volume.7" "volume.8" 
"volume.9" \ 
  "volume.10" 
window modify volume invisible mesh 
 
/ ENTITIES  
 
physics create "inlet" btype "PLOT" face "face.29" 
"face.43" "face.7" \"face.17" 
physics create "outlet" btype "PLOT" face "face.36" 
"face.24" "face.41" \"face.14" 
physics create "wafer" btype "PLOT" face "face.3" "face.1" 
"face.2" "face.4" \"face.5" 
physics create "pad" btype "PLOT" face "face.30" "face.44" 
"face.35" \"face.40" "face.48" 
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physics create "delta1" btype "PLOT" face "face.18" 
"face.8" "face.13" \"face.23" "face.27" 
physics create "outwfedge" btype "PLOT" edge "edge.4" 
"edge.2" 
physics create "wedge1" btype "PLOT" edge "edge.11" 
"edge.6" "edge.12" 
physics create "wedge2" btype "PLOT" edge "edge.12" 
"edge.5" "edge.9" 
physics create "inwfedge" btype "PLOT" edge "edge.3" 
"edge.1" 
physics create "inpadedge" btype "PLOT" edge "edge.67" 
"edge.45" 
physics create "outpadedge" btype "PLOT" edge "edge.56" 
"edge.64" 
save 
export fidap "G04.FDNEUT" 
 
/ IDENTIFIER “G04”  
 
/ CONVERSION OF NEUTRAL FILE TO FIDAP DATABASE  
/ 
FICONV( NEUTRAL ) 
INPUT( FILE="G04.FDNEUT" ) 
OUTPUT( DELETE ) 
END 
 
/ GAMBIT/FiDAP 8.7.4 PREPROCESSING INPUT FILE  
 
TITLE 
G04 
 
/ FIPREP 
 
/ PROBLEM SETUP 
 
PROBLEM (3–D, LAMINAR, NON–LINEAR, ENERGY) 
EXECUTION( NEWJOB ) 
PRINTOUT( NONE ) 
DATAPRINT( CONTROL ) 
/ 
/ CONTINUUM ENTITIES 
/ 
ENTITY ( NAME = "ALUMINA", FLUID, PROPERTY = "ALUMINA" ) 
/ 
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/ BOUNDARY ENTITIES 
 
ENTITY ( NAME = "inlet", PLOT ) 
ENTITY ( NAME = "outlet", PLOT ) 
ENTITY ( NAME = "wafer", PLOT ) 
ENTITY ( NAME = "pad", PLOT ) 
ENTITY ( NAME = "delta1", PLOT ) 
ENTITY ( NAME = "outwfedge", PLOT ) 
ENTITY ( NAME = "wedge1", PLOT ) 
ENTITY ( NAME = "wedge2", PLOT ) 
ENTITY ( NAME = "inwfedge", PLOT ) 
ENTITY ( NAME = "inpadedge", PLOT ) 
ENTITY ( NAME = "outpadedge", PLOT ) 
 
/ LOCAL COORDINATE SYSTEMS  
 
COORDINATE ( SYSTEM = 2, MATRIX,CARTESIAN ) 
0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 
0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 
COORDINATE ( SYSTEM = 3, MATRIX,CARTESIAN ) 
–0.004000 –0.477000 0.000000 1.000000 0.000000 0.000000 
0.000000 1.000000 0.000000 0.000000 0.000000 1.000000 
 
/ SOLUTION PARAMETERS 
 
SOLUTION( SEGREGATED = 50, CR, CGS, VELCONV = .001, NCGC = 
1.E–6, SCGC = 1.E–6, SCHANGE = .0 ) 
PRESSURE( MIXED = 1.E–8, DISCONTINUOUS ) 
RELAX( HYBRID ) 
OPTIONS( UPWINDING, , , ) 
SCALE( VALUE = 1 ) 
TIMEINTEGRATION( BACKWARD,NSTEPS = ,DT = 0,,, ) 
POSTPROCESS( NBLOCKS =  ) 
 
/ LIST OF MATERIALS PROPERTIES  
 
DENSITY( SET = "ALUMINA", CONSTANT = 1 ) 
VISCOSITY( SET = "ALUMINA", CONSTANT = 1 ) 
CONDUCTIVITY( SET = "ALUMINA", CONSTANT = 1 ) 
SPECIFICHEAT( SET = "ALUMINA", CONSTANT = 1 ) 
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/ INITIAL AND BOUNDARY CONDITIONS 
 
ICNODE( , CONSTANT = 0, ALL ) 
BCNODE( , CONSTANT = 0, ENTITY = "inlet" ) 
BCNODE( , CONSTANT = 0, ENTITY = "outlet" ) 
BCNODE( , CONSTANT = 0, ENTITY = "wafer" ) 
BCNODE( , CONSTANT = 0, ENTITY = "pad" ) 
BCNODE( , CONSTANT = 0, ENTITY = "delta1" ) 
BCNODE( , CONSTANT = 0, ENTITY = "outwfedge" ) 
BCNODE( , CONSTANT = 0, ENTITY = "wedge1" ) 
BCNODE( , CONSTANT = 0, ENTITY = "wedge2" ) 
BCNODE( , CONSTANT = 0, ENTITY = "inwfedge" ) 
BCNODE( , CONSTANT = 0, ENTITY = "inpadedge" ) 
BCNODE( , CONSTANT = 0, ENTITY = "outpadedge" ) 
 
END 
 
CREATE( FIPREP,DELETE ) 
PARAMETER( LIST ) 
CREATE( FISOLV ) 
RUN( FISOLV, FOREGROUND ) 
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/MATLAB 7.4.0 (R2007a) Files 
 

/CONVERSION OF NEUTRAL FILE TO MATLAB DATABASE AS AN INPUT FILE 
 
function ReadFidapSolution3D 
global X % X coordinate 
global Y % Y coordinate 
global Z % Z coordinate 
global T % Temperature 
  
folder_name = 'C:\Documents and 
Settings\home\Desktop\fidap\Press\P4.5psi\'; 
 
file_name = '50SNEUT'; 
full_path = strcat(folder_name,'\',file_name); 
 
[Vname,N,T,X,Y,Z] = FD2ML3D(full_path); 
{file_name;Vname;N} 
 
function [Vname,N,F,X,Y,Z] = FD2ML3D(fpneut_name) 
[Vname,N] = textread(fpneut_name,'%20c %d',1); 
A = zeros(4,N); 
fid = fopen(fpneut_name); 
fgets(fid); 
A = fscanf(fid,'%*d %f %f %f %f',[4 N]); 
fclose(fid); 
F = A(1,:); 
X = A(2,:); 
Y = A(3,:); 
Z = A(4,:); 
 
/ DATA PREPARATION AND REARRANGE IN A MATRIX FORM 
 
function OR_Plot3D_Prep 
 
% Prepare data for 3–D plots 
global X 
global Y 
global Z 
global T 
global XI 
global YI 
global ZI 
global TI 
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% Data limits for 3–D plots 
xmin = –0.004; 
xmax = 0; 
ymin = –0.667; 
ymax = –0.287; 
zmin = –0.19; 
zmax = 0.19; 
 
% Matrices for 3–D plots 
 
rx = xmin:0.001:xmax; 
ry = ymin:0.0025:ymax; 
rz = zmin:0.0025:zmax; 
[XI,YI,ZI] = meshgrid(rx,ry,rz); 
TI = griddata3(X,Y,Z,T,XI,YI,ZI); TI(~finite(TI))=0; 
 
/OUTPUT OF FILE AS 3–D PLOTS OR FIGURES  
 
function OR_Plot3D_Temperature 
global XI 
global YI 
global ZI 
global TI 
figure 
clf reset 
 

%Cross–sectional Views along and across the 3–D plot 
 
slice(XI,YI,ZI,TI,[–0.004 –0.003 –0.002 –0.001 0],–0.477,0) 
shading interp; 
set(gca,'CLim',[24 36]) 
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Table F.1    Temperature results of figure 3.13 at a dimensionless distance of r/rn=8. 

MESH 
SIZE 

NUMBER OF 
ELEMENTS 

MESH 
TEMP 

SAFETY 
FACTOR 

35x79 2765 323.15114 
22x79 1738 323.16375 
64x76 4864 323.19566 

1.25 
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Order grid convergence (p) equations 
 

A more direct evaluation of p can be obtained from three grid solutions using a set of grid 
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Temperature results for zero grid spacing h=0, using Richardson’s Extrapolation Method. 
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Grid Convergence Index results 
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Asymptotic range of convergence and relative error equations of figure 3.13 results. 
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